Home - apsi - Science - Water

Author: apsi
apsi'at'iki.fi
Last revision:
13. août 2008
 

ab initio simulations on water





Ref. [Todorova 2006]
  • 32 molecules, ρ = 0.975 g/cm3
  • CP dynamics, Δt = 5 atu, μ = 600 au
  • Nosé-Hoover chain (length = 4): ions 350 K, 2400 cm-1; electrons 0.015 au, 10000 cm-1
  • 70 Ry
  • TM: O, lmax = p, rc = 1.12 Bohr, H, lmax = s, rc = 0.5 Bohr
  • Equilibration 10, production 10 ps (hybrids/HF: 5, 5 ps)
  • CPMD
  • mH = 2
  • Note: Change in BLYP trajectory at ca 10 ps

Tables 4&5: Position, height and full width at half-maximum (FWHM) height of the first peak of the partial oxygen-oxygen radial distribution function for different density functionalsa. Self-diffusion constant D
functional rmax gOO(rmax) FWHM rmin gOO(rmin) D2/ps)
LDA 259(2) 5.07(0.07) 21 312 0.23 0.013
BLYP 279(4) 3.00(0.20) 37 331 0.48 0.048
XLYP 277(2) 3.21(0.11) 34 332 0.40 0.028
PBE 270(5) 2.99(0.08) 37 329 0.47 0.047
rPBE 281(2) 2.29(0.09) 47 334 0.80 0.18
TPSS 271(2) 3.40(0.05) 32 329 0.33 0.032
B3LYP 279(2) 2.48(0.10) 45 340 0.81 0.30
X3LYP 276(6) 2.75(0.10) 40 336 0.62 0.17
PBE0 274(6) 2.58(0.08) 44 335 0.73 0.28
HF 297(6) 2.35(0.13) 78 0.47
TIP4P 278 2.64 44 352 0.90
experiment46 (45oC) 0.2979
a Values in parentheses are maximum deviations over the sampling period, calculated from a sliding window of half width. Values are given in picometers.
Table 6: Distribution of the Number of Hydrogen Bonds for Different Density Functionalsb
  number of hydrogen bonds
functional 1 2 3 4 5 average
LDA 0 3 16 75 6 3.84
BLYP 0 6 19 66 7 3.68
XLYP 0 6 19 69 6 3.75
PBE 0 6 24 66 6 3.78
rPBE 1 11 33 51 6 3.56
TPSS 0 4 20 71 6 3.82
B3LYP 0 6 27 61 6 3.67
X3LYP 0 6 34 51 8 3.58
PBE0 0 11 26 57 4 3.48
HF 3 11 40 39 6 3.31
b The values given are percentages of molecules with the given number of hydrogen bonds. Hydrogen bonds are defined by a geometrical criteria. The oxygen-oxygen distance is smaller than 3.5 Å, and the O-H-O angle is larger than 135o.


Ref. [Lee 2006b]

  • 32 molecules, L = 18.6226 au
  • CP dynamics, Δt = 0.05 fs, μ = 500 au
  • Nosé-Hoover: each degree of freedom (massive)
  • DVR
  • Production 10+30 ps
  • Tave = 298 K
  • PINY_MD
  • mH = 2 amu

TABLES

Table I. Simulation parameters used in the recent ab initio MD simulations of liquid water: simulation type (BO=Born-Oppenheimer and CP=Car-Parrinello), ensemble type, fictitious mass (µ), length of the equilibration run (teq), length of the production run (tprod), average temperature during the production run (T), thermostat used in the equilibration run (VS=velocity scaling, NH=Nosé-Hoover, and NHC=Nosé-Hoover chain), exchange-correlation functional (PBE=Perdew-Burke-Ernzerhof (Ref. 60), BLYP=Becke-Lee-Yang-Parr, (Refs. 58,59), and PW91=Perdew-Wang, (Ref. 94)), and the pseudopotential type (PAW=projected augmented wave, (Ref. 95) H=Hamann, (Ref. 96) TM=Troullier-Martins, (Ref. 66) US=Vanderbilt's ultrasoft, (Refs. 97,98), and GTH=Goedecker-Teter-Hutter (Ref. 88)) and the basis set type (PW=plane wave, GPW=hybrid gaussian/plane wave, NAO=numerical atomic orbital, DVR=discrete variable representation, the size of basis set in the parentheses). The number in parentheses in the second column is the number of water molecules used in the simulation. The last column shows the maximum value of oxygen-oxygen radial distribution function obtained from each simulation.
ReferenceDynamicsµSystemEnsembleteq (ps)tprod (ps)T (K)ThermoXCPPBasisgOOmax
18BO(32)...D2ONVE10.44.4334VSPW91PAW 3.50
-''-BO(32)...D2ONVE2.73.6337VSPBEPAW 3.7
22CP(32)340D2ONVE220300VSBLYPHPW(85)3.6
-''-CP(32)760D2ONVE220300VSBLYPHPW(85)3.46
57CP(54) H2ONVE319.8296VSPBEHPW(85)3.65
-''-BO(64) H2ONVE320.5306VSPBEHPW(85)3.83
24CP(64)700H2ONVE1.54343 PBEUSPW(25)2.5
26BO(32)...H2ONVE1520305VSBLYPGTHGPW(TZV2P)3.35
61BO(64)...H2ONVE510315 BLYPTMPW(85)3.04a
-''-CP(64)400H2ONVE1220315 BLYPTMPW(85)2.92a
-''-CP(64)400H2ONVT510315NHCBLYPTMPW(85)2.96a
62CP(64)340H2ONVE432300VSBLYPTMPW(80)3.24
23BO(64)...D2ONVE420300VSBLYPTMNAO(DZP)3.20
43CP(64)600D2ONVT210300NHCBLYPTMPW(70)3.10
25CP(32)300D2ONVE2522.1325NHPBETMPW(70)3.25
30CP(32)400O2OaNVT1460300NHCBLYPTMPW(70)3.20
This workCP(32)500D2ONVT1030300NHCBLYPTMDVR(0.249)2.90
aThe notation O2O indicates that, in the study referenced, all hydrogens were given the mass of oxygen.
Table II. Binding energies of water dimer in kcal/mol computed from the plane-wave basis sets with the kinetic energy cutoffs between 70 and 300  Ry and the DVR basis sets with the grid spacing between h=0.249 and h=0.191  a.u.. For comparison, binding energies from other recent work (Refs. 16,23,57,79) computed with plane-wave basis sets and Gaussian basis sets are included.
ReferenceBasis setEb (kcal/mol)ReferenceBasis setEb (kcal/mol)
16PW(70  Ry)4.3This workPW(70  Ry)4.27/4.40a
57aug-cc-pVTZ4.18 PW(90  Ry)4.26/4.33
23DZP(0.5)b4.76 PW(120  Ry)4.25/4.33
DZP(0.2)b4.68 PW(200  Ry)4.26/4.34
DZP(0.0)b4.01 PW(300  Ry)4.25/4.33
79PW(70  Ry)4.34 DVR(0.249)c4.30/4.23
6-311++G4.17 DVR(0.229)4.26/4.22
DVR(0.216)4.25/4.28
DVR(0.201)4.30/4.30
DVR(0.191)4.32/4.32
aThe first number corresponds to the binding energy obtained by full geometry optimization while the second corresponds to the binding energy obtained for fixed geometries of the dimer and monomer.
bNumerical atomic orbitals with double-ζ (DZP) level. The number in parentheses is the pressure parameter defining the cutoff radii of the support regions of the orbitals.
cThe number in parentheses refers to the grid spacing in bohrs.
Table III. Percentage of water molecules having the specified number of donor and acceptor hydrogen bonds obtained from the 30  ps production run of the CPAIMD-BLYP/DVR simulation. Three different definitions of the hydrogen bond geometry are taken from (1) Ref. 93 (rO...H ≤ 2.45 Å, β ≤ 30°), (2) Ref. 20 (1.59 Å < rO...H < 2.27 Å, α > 140°), and (3) Ref. 50 (rO...O ≤ -0.000 44 β2 + 3.3 Å, β in degrees).
No. of acceptor(1)93(2)20(3)50
No. of donor
012012012
0001022010
118162131911218
2011631164511453



Ref. [Mantz 2006]

  • N molecules, ρ = 0.975 g/cm3
  • CP dynamics, Δt = 5 atu, μ = 600 au
  • Nosé-Hoover: ions massively; electrons NORB scheme (independent-state thermostatting)
  • 70 Ry
  • PINY_MD
  • mH = 15.9994 amu
  • Pre-conditioning of wave functions above μ0 = 400 au
  • AIPI: 64 molecules, P = 16 beads, 80 Ry, BLYP

Table 1: Major Simulation Studies of Pure Liquid Water, Excluding Those at 323 K for Brevitya
force field NH2O L300 (Å) L353 (Å) T (ps) Δt (fs)
BLYP 32 9.865 9.948 60 0.125
BLYPb 64 12.419   10 0.121
BLYP-PIc 64 12.419   15 0.121
TIP3P 256 19.730 19.896 15000 6.0
TIP4P 128 15.660 15.792 1200 6.0
TIP4P-flex 128 15.660 15.792 1200 1.0
TIP4P-flex-PI 128 15.660 15.792 200 1.0
TIP4P-pol-2 500 24.630d 24.972d    
TIP5P 500 24.783d 25.206d    
a Symbols are defined and force fields are referenced in the text. b Reference 29 c Reference 30 d Average value during a MC simulation in the NPT ensemble
Table 2: gOO(r) first peak height at rOOmax and the coordination number, nOO(r), at rOOmin the first local minimum of gOO(r)

  TIP3P TIP4P -flex -flex-PI -pol-2 TIP5P AIMD AIPI
T (K) 300 353 300 353 300 353 300 353 300 353 300 353 300 323 353 300
rOOmax(Å) 2.78 2.78 2.78 2.78 2.74 2.74 2.74 2.78 2.74 2.78 2.74 2.78 2.74 xxx 2.78 2.74
g(rOOmax) 2.8 2.5 3.0 2.6 3.3 2.8 3.1 2.7 3.0 2.6 2.9 2.4 3.2 2.8 2.6 3.4
rOOmin(Å) 3.34 3.34 3.22 3.30 3.22 3.26 3.22 3.26 3.22 3.30 3.26 3.34 3.22 xxx 3.30 3.22
g(rOOmin) xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx 0.5 0.63 0.73 xxx
n(rOOmin) 4.7 4.6 4.1 4.3 4.1 4.1 4.1 4.1 4.0 4.2 4.1 4.2 4.1 xxx 4.2 4.0



Ref. [Lee 2006a]

  • 32 molecules, L = 18.6226 au
  • CP dynamics, Δt = 0.05 fs, μ = 500 au
  • Nosé-Hoover: each degree of freedom
  • DVR
  • Production 10 ps
  • Tave = 298 K
  • PINY_MD
  • mH = ? amu
Table xxx: gOO(r) first peak height at rOOmax and the coordination number, nOO(r), at rOOmin the first local minimum of gOO(r)

  AIMD
T (K) 298
rOOmax(Å) xxx
g(rOOmax) 2.95
rOOmin(Å) xxx
g(rOOmin) 0.65



Ref. [Sit 2005]

  • 32 molecules, n = 1.0957~g/cm$^3$, bcc cell
  • CP dynamics, Δt = 10 atu, μ = 700 au
  • Single Nosé-Hoover on ions
  • Simulation time 25 ps
  • Tave = 325 K
  • mH = 2 amu
Table II. Vibrational frequencies of the water monomer: nu1, nu2, and nu3 are the symmetric stretching, bending, and asymmetric modes, respectively.
PBEExpt.
(Ref. 34)
BLYP
(Ref. 33)
USNC
nu1 (cm–1)3781370436573567
nu2 (cm–1)1573159915951585
nu3 (cm–1)3908381637563663
Table III. Vibrational frequencies of the water dimer: nu1, nu2, and nu3 are the symmetric stretching, bending, and asymmetric stretching modes, respectively. Proton acceptor and donor molecules are denoted as (A) and (D). nu(Hb) are the two libration modes between molecules and nu(O–O) is the hydrogen-bond stretching mode.
PBEExpt.
(Refs. 38,39)
BLYP
(Ref. 33)
USNC
nu1(A) (cm–1)3778369536223577
nu2(A) (cm–1)1570159616001593
nu3(A) (cm–1)3901380437143675
nu1(D) (cm–1)3601353235483446
nu2(D) (cm–1)1593161616181616
nu3(D) (cm–1)3871378136983647
nu(Hb) (cm–1)666644520600
nu(Hb) (cm–1)379378320333
nu(O–O) (cm–1)202196243214
Table IV. Structural and dynamical parameters before and after the 10  ps (see Fig. 1) compared with the experimental results at 298  K.
g(r)maxD (cm2/s)
Before2.821.5×10–5
After3.210.14×10–5
Expt. (Refs. 40,3)2.752.0×10–5
Table V. Simulation details for our production runs.
PseudopotentialsT
(K)
Density
(g/cm3)
µ
(a.u.)
deltat
(a.u.)
Production time
(ps)
US3251.0957450737.6
NC3251.0957300522.1
US3501.0815450722.9
US3501.0815450722.9
US4001.0554450732.5
NC4001.0554300520.2
Table VI. Summary of the structural and dynamical properties of water. Dself is the self-diffusion coefficient, gmax is the height of the first peak of the O–O radial distribution function, and R[gmax] is the location of the first peak. The last column shows the number of hydrogen bonds per molecule.
Dself
10–5  cm2/s
gmaxR[gmax]No. of H bonds
per molecule
325  K (US)0.073.382.673.86
325  K (NC)0.163.252.733.79
350  K (US)0.253.252.733.77
375  K (US)0.263.102.713.72
400  K (US)2.032.502.733.45
400  K (NC)1.662.552.753.37
Expt. (Refs. 40,46) at 300  K1.802.752.803.58



Ref. [Kuo 2004]

  • N molecules
  • CP+BO dynamics, Δt = xxx fs, μ = xxx au
  • Nosé-Hoover:
  • Production 10 ps
  • Tave = xxx K
  • CPMD, CP2K
  • mH = ? amu
Table 3: Comparison of the Simulation Resultsa
  Tion (K) g(rOOmax) r(rOOmax) (Å) coordination dOH (Å) αHOH(deg) CVclass [J/(mol K)] Dself 2/ps)
CPMD-NVE-BO 323 3.0 2.76 4.0 0.99 106   0.04
CP2K-MD-NVE-1 330 3.0 2.75 4.1 1.00 105   0.03
CP2K-MD-NVE-2 343 3.2 2.75 4.0 1.00 106   0.02
CP2K-MD-NVE-3 334 3.1 2.75 4.0 1.00 106   0.03
CPMD-NVE-400 314 2.9 2.76 4.0 0.99 106   0.06
CPMD-NVE-400-128319 2.8 2.76 4.0 0.99 106   0.06
CPMD-NVT-i-400 312 3.0 2.75 3.9 0.99 106 59  
CPMD-NVT-ie-800 310 2.8 2.75 4.0 0.99 106 65  
CP2K-MC-NVT-1   2.9 2.75 3.9 1.00 104 73  
CP2K-MC-NVT-2   3.0 2.77 4.1 1.00 106 89  
a The ensemble averages of the ionic kinetic temperature, the height and position of the first maximum in the oxygen-oxygen radial distribution function, the oxygen-oxygen coordination number, the OH bond length, the HOH bond angle, the classical constant-volume heat capacity, and the self-diffusion constant are listed.


Ref. [Grossman 2004a]

  • N molecules, L = 9.86 Å for 32-water runs and L = 11.74 Å for the 54-water run
  • CP dynamics, Δt = 0.075 fs, μ = xxx au
  • 85 Ry, Hamann pseudo potentials
  • NVE
  • Production xxx ps
  • Tave = xxx K
  • jeep?
  • mH = ? amu
Table I. For each simulation performed in this work, the number of molecules N (32 or 54), molecule type (H2O or D2O), density functional employed (PBE or BLYP), fictitious mass parameter µ (a.u.), diffusion coefficient D (cm2/s), position (Å), and value of first maximum and minimum in the gOO(r), average temperature (K), and average coordination of the water molecules are listed. For each calculation, quantities are averaged over the entire production run (20 ps), with the exception of the 54 H2O simulation which was run for 12 ps. The last two rows contain measured diffusion coefficientsa and structural datab for water at ambient conditions.
N MoleculeDFT µDR[g(r)max]g(r)maxR[g(r)min]g(r)minTavgCoordination
32H2O PBE3401.2×10–62.713.463.300.41290.84.3
32 H2OPBE7603.1×10–52.752.623.450.71285.94.9
32H2OBLYP3401.1×10–62.733.653.320.40292.9 4.4
32H2OBLYP7602.3×10–52.762.593.520.75 281.34.9
32D2OPBE3401.6×10–62.724.113.30 0.35294.74.2
32D2OPBE7601.5×10–62.753.46 3.350.48293.04.4
32D2OBLYP3405.5×10–72.73 3.603.330.39297.54.3
32D2OBLYP7601.5×10–6 2.743.463.340.42291.44.3
32D2OBLYP1100 1.0×10–52.772.843.460.66283.94.8
54H2OPBE 3403.7×10–62.713.273.320.46294.54.3
Exp.H2O 2.2×10–52.732.753.360.78298.04.7c
Exp. D2O1.8×10–5298.0
a See Ref. 57.
b See Ref. 2.
c From Ref. 3.



ab initio simulations on liquid water