Exercises - Thursday

March 22, 2006

Topics: Spin, TDDFT

Start

• In the shell execute:

cd <your-work-directory>
mkdir 02-spin
cd 02-spin
cp ~/Job_sub.cmd .
cp ~/02.inp input

• Output comes in file 'output'

New keywords

- LSD
- MULTIPLICITY

• ELECTRONIC SPECTRA

1 O_2 — multiplicity

Learn

• How to control the spin state of the system

1.1 Multiplicity, or spin state

- 1. Optimise geometry in the singlet state
- 2. Optimise geometry in the triplet state
- 3. Optimise geometry in the quintett state
- 4. Which charge state is the most stable one?
- 5. Do two calculations in the singlet state with and without LSD always necessarily give the same answer?

1.2 Eigenvalues

1. Calculate the eigenvalues in the stable state; which levels are degenerate?

To notice:

• If you want to calculate CUBEFILEs for the virtual states you first have to do the KOHN-SHAM ENERGIES and RESTART with the number of STATES including also the number of calculated virtual orbitals

2 Formaldimine — excited states

Learn

- how to calculate excitation energies
- relax structures in the excited state

Change job

• In the shell execute:

```
mkdir ../H2NCH-exc
cd ../H2NCH-exc
cp ~/Job_sub.cmd .
cp ~/H2NCH.inp input
```

```
&CPMD
    optimise geometry
   lbfgs
    electronic spectra
   restart wavefunction coordinates
   OPTIMISE GEOMETRY
TDDFT
RESTART WAVEFUNCTION COORDINATES LINRES
CONVERGENCE ORBITALS
1.0E-7
MIRROR
STRUCTURE ANGLES
&END
&TDDFT
STATES SINGLETS
   TAMM-DANCOFF
FORCE STATE
       1
&END
&DF
   FUNCTIONAL PBE
GC-CUTOFF
1.0E-7
&END
&SYSTEM
SYMMETRY
CELL
12.0000 1.0 1.0 0 0 0
CUTOFF
70.0
POISSON SOLVER TUCKERMAN
&END
&ATOMS
*C_MT_PBE.psp KLEINMAN-BYLANDER
   LMAX=D
1.50 0 0
*N_MT_PBE.psp KLEINMAN-BYLANDER
LMAX=D
0.00 0 0
*H_MT_PBE.psp KLEINMAN-BYLANDER
     .<u>0</u>0
           1
1
-1
                0
0
0
2:
2
&END
     .50
.50
```

2.1 Excitation energies and geometries in the excited state

- 1. Optimise geometry
- 2. Perform 'ELECTRONIC SPECTRA'; this will necessitate the &TDDFT section
- 3. You can calculate and visualise the different frontier orbitals, if you want to know how they look like. What are the active orbitals taking part in the excitation?

2.1 Excitation energies and geometre®RMAdexMMenEtateEXCITED STATES

4. Shift the two hydrogen atoms of the –NH group out of the molecular plane and optimise the geometry in the electronically excited state using TDDFT

To notice:

- When you want to start e. g. an geometry optimisation using TDDFT you always need to evaluate the 'ELECTRONIC SPECTRA' first
- When restarting a TDDFT calculation ALWAYS move the previous RESTART file to 'RESTART' and NEVER use the option 'RESTART LATEST'! KOHN-SHAM ENERGIES in CPMD