

- k point sampling
- Broadening of / fractional occupation numbers
- Translations in Ewald summation

Solids

- Real materials contain $\approx 10^{23} \mbox{ atoms/cm}^3$
- \bullet In practical calculations $\approx 10^3$ atoms possible
- Trick: Periodic boundary conditions

Solids

- Metals Metals and semi-metals have a vanishing electronic band gap Thus both minimum-energy (low-temperature) excitations and convergence
- problems in achieving convergenceSolution: Fractional occupation numbers

Bloch's theorem

• Bloch's theorem: The eigenstates in a periodic potential can be chosen to be

$$\psi_{i\mathbf{k}}\left(\mathbf{r}\right) = e^{\mathbf{i}\mathbf{k}\cdot\mathbf{r}}u_{i\mathbf{k}}\left(\mathbf{r}\right)$$

• Another way of looking it: Fold back the "infinite sum" over cells into the 1st Brillouin zone

• Integrals over whole space become integrals over the 1st Brillouin zone only:

$$\int_{\Omega} d\Omega \Rightarrow \int_{\mathbf{k}} d\mathbf{k}$$

Brillouin zone = region of space closest to the centre of the reciprocal space tha any other multiple of reciprocal lattice vectors $\mathbf{L} = i_1\mathbf{b}_1 + i_2\mathbf{b}_2 + i_3\mathbf{b}_3$

Brillouin zone integration

- One can reduce the integral to go over the irreducible part of the BZ only
- Different ways to perform integral $\int_{\mathbf{k}\in\mathsf{IBZ}}d\mathbf{k}$
 - (Linear) Tetrahedron method
 - Random k points (no one's using this anymore)
 - Special \mathbf{k} points
 - $\ast\,$ Chadi-Cohen k points
 - * (Extended) Cunningham k points (2D-hexagonal)
 - * Equi-distance or Monkhorst-Pack grids

Brillouin zone integration Discretisation

$$\int_{\mathbf{k}} d\mathbf{k} \approx \sum_{\mathbf{k}} w_{\mathbf{k}}$$

- Discretisation
- $\bullet\,$ The weights are determined by the relative volume around the single k points

Brillouin zone integration Linear tetrahedron method

- Divide the space into tetrahedra
- The function to be integrated is linearly interpolated within the tetrahedra
- The interpolated function is integrated

Monkhorst-Pack k point sets Or, equi-distance grids

• Rectangular unit cells

Chadi-Cohen k point sets 2D: (extended) Cunningham k point sets

- Based on two generating vectors and their sum $\mathbf{k}_{gen,1} + S\mathbf{k}_{gen,2}$
- In hexagonal unit cells

Hexagonal cells

 The original Monkhorst-Pack sets always avoided point Γ; however this leads to anisotropic sampling (left). The shifted set (right), with one point at Γ, does not have this problem

• Cunningham sets do not suffer from the problem

k set test

Γ-only set

- Most of CPMD simulations use the Γ-point-only sampling
- This is justified if ...
 - the system doesn't have any dispersion, *i. e.* interaction between different cells is small
 - the cell is large enough so that even the Γ point is sampled many times
 - the system is disordered
- If you use it, try at least to estimate the error

Broadening of occupation numbers Or, fractional occupation numbers

- The occupation numbers close to the Fermi energy are set to values between [0...1]
- Thus the electrons are "at finite temperature", or excited (in a mean-field sense)
- Mermin functional is available for real temperatures
- Otherwise one has to correct for the change in energy and other quantities because of the change in the system

Fermi-Dirac broadening

• Occupation numbers

$$f\left(\frac{\varepsilon - E_F}{\sigma}\right) = \left[\exp\left(\frac{\varepsilon - E_F}{\sigma}\right) + 1\right]^{-1}$$

• New variational "free energy"

$$F = E - \sum_{i\mathbf{k}} \sigma S\left(f_{i\mathbf{k}}\right)$$

• Entropy

$$S(f) = -[f \ln f + (1 - f) \ln (1 - f)]$$

• Smearing parameter

$$\sigma = k_B T$$

In practise $\sigma \approx 0.05 \dots 0.2$ eV

• For more accurate energy "extrapolate to 0 K":

$$E(T \to 0) \approx \frac{1}{2}(F + E)$$

Gaussian smearing

• Occupation numbers

$$f\left(\frac{\varepsilon - E_F}{\sigma}\right) = \frac{1}{2}\left[1 - \operatorname{erf}\left(\frac{\varepsilon - E_F}{\sigma}\right)\right]$$

• Entropy and free energy cannot be written in terms of \boldsymbol{f}

$$S\left(\frac{\varepsilon - E_F}{\sigma}\right) = \frac{1}{2\sqrt{\pi}} \exp\left[-\left(\frac{\varepsilon - E_F}{\sigma}\right)^2\right]$$

• Smearing parameter σ has no physical interpretation

Other smearing schemes

- Methfessel & Paxton
 - Expansion of step function in a complete set of orthogonal functions
- "Cold" smearing
 - Not symmetric around Fermi energy
- Both can yield negative occupation numbers

Translations in Ewald sum

• Overlap between nuclear Gaussian's in electrostatic energy:

$$E_{\text{ovrl}} = E_{I,J}' \sum_{\mathbf{L}} \frac{Z_I Z_J}{|\mathbf{R}_I - \mathbf{R}_J - \mathbf{L}|} \operatorname{erfc} \left(\frac{|\mathbf{R}_I - \mathbf{R}_J - \mathbf{L}|}{\sqrt{R_I^{c2} + R_I^{c2}}} \right)$$

- The default in CPMD is to use the minimum convention, *i. e.* only the closest neighbour is included
- More L's can be included using keyword 'TESR'

Free energy functional

• CPMD contains a free energy functional for calculating metals

$$F(N,V,T[n(\mathbf{r})]) = -2k_BT\sum_{i} \ln\left[1 + e^{-\beta(\varepsilon-\mu)}\right] + \mu N - \frac{1}{2}E_H - \int_{\mathbf{r}} v_{xc}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r} + E_{xc}$$

- Requires the usage of iterative diagonalisation (Lanczos or Davidson)
- If using, please remember the mixing

Solids: Summary

- The idea of k points:
 - Replace the infinite volume with integral over the 1st Brillouin zone only
 - Replace the integral by weighted sum
- The occupation numbers around the Fermi energy are broadened in order to
 - simulate temperature
 - improve convergence
- IN CPMD FREE ENERGY FUNCTIONAL for calculating metals