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Solids
Outline

• k point sampling

• Broadening of / fractional occupation numbers

• Translations in Ewald summation



Solids
PBC

• Real materials contain ≈ 1023 atoms/cm3

• In practical calculations ≈ 103 atoms possible

• Trick: Periodic boundary conditions



Solids
Metals

• Metals and semi-metals have a vanishing electronic band gap
• Thus both minimum-energy (low-temperature) excitations and convergence

problems in achieving convergence
• Solution: Fractional occupation numbers



Bloch’s theorem

• Bloch’s theorem: The eigenstates in a periodic potential can be chosen to be

ψik (r) = eik·ruik (r)

• Another way of looking it: Fold back the “infinite sum” over cells into the
1st Brillouin zone

• Integrals over whole space become integrals over the 1st Brillouin zone only:∫
Ω
dΩ ⇒

∫
k

dk



Brillouin zone = region of space closest to the centre of the reciprocal space tha
any other multiple of reciprocal lattice vectors L = i1b1 + i2b2 + i3b3



Brillouin zone integration

• One can reduce the integral to go over the irreducible part of the BZ only

• Different ways to perform integral
∫
k∈IBZ dk

– (Linear) Tetrahedron method

– Random k points (no one’s using this anymore)

– Special k points

∗ Chadi-Cohen k points

∗ (Extended) Cunningham k points (2D-hexagonal)

∗ Equi-distance or Monkhorst-Pack grids



Brillouin zone integration
Discretisation∫
k
dk ≈

∑
k

wk

• Discretisation
• The weights are determined by the relative volume around the single k points



Brillouin zone integration
Linear tetrahedron method

• Divide the space into tetrahedra

• The function to be integrated is
linearly interpolated within the
tetrahedra

• The interpolated function is
integrated



Monkhorst-Pack k point sets
Or, equi-distance grids

• Rectangular unit cells



Chadi-Cohen k point sets
2D: (extended) Cunningham k point sets

• Based on two generating vectors and their sum kgen,1 + Skgen,2

• In hexagonal unit cells



Hexagonal cells

• The original Monkhorst-Pack sets always avoided point Γ; however this leads
to anisotropic sampling (left). The shifted set (right), with one point at Γ,
does not have this problem

• Cunningham sets do not suffer from the problem



k set test

• Mathematical test for the quality of a given set



Γ-only set

• Most of CPMD simulations use the Γ-point-only sampling

• This is justified if ...

– the system doesn’t have any dispersion, i. e. interaction between different
cells is small

– the cell is large enough so that even the Γ point is sampled many times

– the system is disordered

• If you use it, try at least to estimate the error



Broadening of occupation numbers
Or, fractional occupation numbers

• The occupation numbers close to the Fermi energy are set to values between
[0. . . 1]

• Thus the electrons are “at finite temperature”, or excited (in a mean-field
sense)

• Mermin functional is available for real temperatures

• Otherwise one has to correct for the change in energy and other quantities
because of the change in the system



Fermi-Dirac broadening

• Occupation numbers

f

(
ε− EF

σ

)
=

[
exp
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ε− EF

σ

)
+ 1

]−1

• New variational “free energy”

F = E −
∑
ik

σS (fik)

• Entropy

S (f) = − [f ln f + (1− f) ln (1− f)]

• Smearing parameter

σ = kBT

In practise σ ≈ 0.05 . . .0.2 eV

• For more accurate energy “extrapolate to 0 K”:

E (T → 0) ≈
1

2
(F + E)



Gaussian smearing

• Occupation numbers

f

(
ε− EF

σ

)
=

1

2

[
1− erf

(
ε− EF

σ

)]
• Entropy and free energy cannot be written in terms of f
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• Smearing parameter σ has no physical interpretation



Other smearing schemes

• Methfessel & Paxton

– Expansion of step function in a complete set of orthogonal functions

• “Cold” smearing

– Not symmetric around Fermi energy

• Both can yield negative occupation numbers



Translations in Ewald sum

• Overlap between nuclear Gaussian’s in electrostatic energy:

Eovrl = E′
I,J

∑
L

ZIZJ

|RI −RJ − L|
erfc

|RI −RJ − L|√
Rc
I
2 +Rc

I
2


– The default in CPMD is to use the minimum convention, i. e. only the

closest neighbour is included

– More L’s can be included using keyword ’TESR’



Free energy functional

• CPMD contains a free energy functional for calculating metals

F (N,V, T [n (r)]) = −2kBT
∑
i

ln
[
1 + e−β(ε−µ)

]
+µN−

1

2
EH−

∫
r

vxc (r) n (r) dr+Exc

• Requires the usage of iterative diagonalisation (Lanczos or Davidson)

• If using, please remember the mixing



Solids: Summary

• The idea of k points:

– Replace the infinite volume with integral over the 1st Brillouin zone only

– Replace the integral by weighted sum

• The occupation numbers around the Fermi energy are broadened in order to

– simulate temperature

– improve convergence

• In CPMD FREE ENERGY FUNCTIONAL for calculating metals


