
Plane Wave Basis Sets



Kohn–Sham Method

min
{Φ}

EKS[{Φi(r)}]

∫
Φ?
i (r)Φj(r)dr = δij

n(r) =
N∑
i=1

fi|Φi(r)|2



Basis Set Methods

Basis set {ϕα(r)}Mα=1

Linear expansion of Kohn–Sham orbitals

Φi(r) =
M∑
α=1

cαiϕα(r)



Kohn–Sham Method

min
c
EKS[c]

∑
αβ

c?αicβj

∫
ϕ?α(r)ϕβ(r)dr =

∑
αβ

c?αicβjSαβ = δij

C†SC = 1

n(r) =
N∑
i=1

fi
∑
αβ

c?βicαiϕ
?
β(r)ϕα(r) =

∑
αβ

Pαβϕαβ(r)



Atomic Orbital Basis Sets

Philosophy : Molecules are assemblies of slightly distorted atoms

ϕα(r) = ϕα(r)Ylm(Θ, φ)

ϕα(r) =

exp[−αr2] Gaussian

exp[−αr] Slater

ϕα(r;RI) : basis functions are attached to nuclear positions



Advantages / Disadvantages AO Basis Sets

+ according to chemical insight

+ small basis sets give already good results

– non-orthogonal

– depend on atomic position

– basis set superposition errors (BSSE)



Plane Waves

Philosophy : Assemblies of atoms are slight distortions to free electrons

ϕα(r) =
1√
Ω

exp[iGα · r]

+ orthogonal

+ independent of atomic positions

+ no BSSE

± naturally periodic

– many functions needed



Computational Box

• Box matrix : h = [a1, a2, a3]

• Box volume : Ω = det h



Lattice Vectors

• Direct lattice h = [a1, a2, a3]

• Direct lattice vectors : L = i · a1 + j · a2 + k · a3

• Reciprocal lattice 2π(ht)−1 = [b1,b2,b3]

bi · aj = 2πδij

• Reciprocal lattice vectors : G = i · b1 + j · b2 + k · b3



Properties of Plane Waves

ϕG(r) =
1√
Ω

exp[iG · r]

• Plane waves are periodic wrt. box h

• Plane waves are orthonormal

〈ϕG′|ϕG〉 = δG′,G

• Plane waves are complete

ψ(r) = ψ(r + L) =
1√
Ω

∑
G

ψ(G) exp[iG · r]



Local Functions

φ(r) = φ(r)Ylm(Θ,Φ)

=
∑
G

φ(G) exp[iGr] Ylm(Θ̃, Φ̃)

Bessel transform

φ(G) = 4π(−i)l
∫ ∞
0

dr r2φ(r) jl(Gr)

jl : Spherical Bessel functions of the first kind



Position Dependence

Translation

φ(r) −→ φ(r−RI)

φ(r−RI) =
∑
G

φ(G) exp[iG · (r−RI)]

=
∑
G

φ(G) exp[iG · r] exp[−iG ·RI]

Structure Factor

SI(G) = exp[−iG ·RI]

Derivatives

∂φ(r;RI)

∂RI,s
= −i

∑
G

Gsφ(G) exp[iG · r]SI(G)



Kinetic Energy

Kinetic energy operator is diagonal in the plane wave basis

−
1

2
∇2ϕG(r) = −

1

2
(iG)2

1√
Ω

exp[iG · r] =
1

2
G2ϕG(r)

Ekin(G) =
1

2
G2



Cutoff: Finite Basis Set

1

2
G2 ≤ Ecut

NPW ≈
1

2π2
ΩE

3/2
cut [a.u.]

Basis set size depends on volume of box and cutoff only



Real Space Grid
Sampling Theorem

• Sampling interval ∆ = L
N

• Nyquist critical frequency fc = 1
2∆

For a given plane wave cutoff (frequency) there is a minimum

number of equidistant real space grid points needed for the same

accuracy.

Real space grid: Ri = (i− 1)∆



Fast Fourier Transform

ψ(G)←→ ψ(R)

The information contained in ψ(G) and ψ(R) are equivalent.

Transform from ψ(G) to ψ(R) and back is done using Fourier

methods. If the number of grid points can be decomposed into

small prime numbers fast Fourier transform techniques can be used.

Fourier transform N2 operations
fast Fourier transform N log[N ] operations



Integrals

I =
∫
Ω
A?(r)B(r)dr

=
∑
GG′

A?(G)B(G)
∫

exp[−iG · r] exp[iG′ · r]dr

=
∑
GG′

A?(G)B(G) Ω δGG′

= Ω
∑
G

A?(G)B(G)

Parseval’s theorem

Ω
∑
G

A?(G)B(G) =
Ω

N

∑
i

A?(Ri)B(Ri)



Electron density

n(r) =
∑
i

fi|Φi(r)|2 =
1

Ω

∑
i

fi
∑

G,G′
c?i (G)ci(G

′) exp[i(G−G′) · r]

n(r) =
2Gmax∑

G=−2Gmax

n(G) exp[iG · r]

The electron density can be expanded exactly in a plane wave basis

with a cutoff four times the basis set cutoff.

NPW(4Ecut) = 8NPW(Ecut)



Comparison to AO Basis Set

Plane Waves:

1

2
G2 < Ecut

1

2
G′2 < Ecut

1

2

(
G+G′

)2
<

(√
Ecut +

√
Ecut

)2
= 4Ecut

Atomic orbitals: every product results in a new function

ϕα(r−A)ϕβ(r−B) = ϕγ(r−C)

Linear dependence for plane waves vs. quadratic depen-

dence for AO basis sets.



Operators
Matrix representation of operators in Kohn–Sham theory

O(G,G′) = 〈G|O|G′〉

Kinetic Energy Operator

TG,G′ = 〈G| −
1

2
∇2|G′〉 =

1

2
G2δG,G′



Local Operators

〈G′|O(r)|G”〉 =
1

Ω

∑
G

O(G)
∫
e[−iG

′·r]e[iG·r]e[iG”·r]dr

=
1

Ω

∑
G

O(G)
∫
e[i(G−G′+G”)·r]dr

=
1

Ω
O(G′ −G”)

Local operators can be expanded in plane waves with a

cutoff four times the basis set cutoff.



Applying Operators

B(G) =
∑
G′

O(G,G′)A(G′)

Local Operators: Convolution

B(G) =
∑
G′

1

Ω
O(G−G′)A(G′) = (O ∗A)(G)

Convolution in frequency space transforms to product in real space

B(Ri) = O(Ri)A(Ri)



Kohn–Sham Orbitals

• KS–orbitals (for periodic system)

Bloch theorem

Φi(r,k) = exp[ik · r] ui(r,k)

ui(r,k) = ui(r + L,k)

• Γ - point approximation:

k = 0 only point considered in the Brillouin zone.

• Γ - point KS–orbitals

Φi(r) = ui(r)

=
1√
Ω

∑
G

ci(G) exp[iG · r]



Kohn–Sham Energy

EKS = Ekin + EPP + EES + Exc

Ekin Kinetic energy

EPP Pseudopotential energy

EES Electrostatic energy ( sum of electron-electron interaction +

nuclear core-electron interaction + ion-ion interaction)

Exc Exchange–correlation energy



Kinetic Energy

Ekin =
∑
i

fi〈Φi|−
1

2
∇2|Φi〉

=
∑
i

∑
GG′

c∗i (G)ci(G
′)〈G|−

1

2
∇2|G′〉

=
∑
i

∑
GG′

c∗i (G)ci(G
′) Ω

1

2
G2δG,G′

=
Ω

2

∑
i

∑
G

G2|ci(G)|2



Electrostatic Energy

EES =
1

2

∫ ∫
dr dr′

n(r)n(r′)

|r− r′|
+
∑
I

∫
drV Icore(r)n(r) +

1

2

∑
I 6=J

ZIZJ
|RI −RJ |

Gaussian charge distributions

nIc(r) = −
ZI(
Rc
I

)3π−3/2 exp

−(r−RI

Rc
I

)2


Electrostatic potential of nIc

V Icore(r) =
∫
dr′

nIc(r
′)

|r− r′|
= −

ZI
|r−RI |

erf

[
|r−RI |

Rc
I

]



Electrostatic Energy

EES =
1

2

∫ ∫
dr dr′

n(r)n(r′)

|r− r′|
+

1

2

∫ ∫
dr dr′

nc(r)nc(r′)

|r− r′|

+
∫ ∫

dr dr′
nc(r)n(r′)

|r− r′|

+
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

−
1

2

∫ ∫
dr dr′

nc(r)nc(r′)

|r− r′|

where nc(r) =
∑
I n

I
c(r).

The first three terms can be combined to the electrostatic energy of

a total charge distribution

ntot(r) = n(r) + nc(r)

and the other two terms calculated analytically.



Electrostatic Energy

EES =
1

2

∫ ∫
dr dr′

ntot(r)ntot(r
′)

|r− r′|

+
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

erfc

 |RI −RJ |√
Rc
I
2 + Rc

J
2


−
∑
I

1√
2π

Z2
I

Rc
I

• 1. Term: Long-ranged forces

• 2. Term: Short-ranged two-center terms

• 3. Term: One-center term



Periodic Systems

Plane wave expansion of ntot

ntot(G) = n(G) +
∑
I

nIc(G)SI(G)

= n(G)−
1

Ω

∑
I

ZI√
4π

exp
[
−

1

2
G2Rc

I
2
]
SI(G)

Criteria for parameter Rc
I : PW expansion of nIc has to be converged

with density cutoff.
Poisson equation

∇2VH(r) = −4πntot(r)

for periodic boundary conditions

VH(G) = 4π
ntot(G)

G2

VH(G) is a local operator with same cutoff as ntot.



Periodic Systems

EES = 2πΩ
∑

G 6=0

|ntot(G)|2

G2
+ Eovrl − Eself

where

Eovrl =
∑′
I,J

∑
L

ZIZJ
|RI −RJ − L|

erfc

|RI −RJ − L|√
Rc
I
2 + Rc

J
2


and

Eself =
∑
I

1√
2π

Z2
I

Rc
I

Sums expand over all atoms in the simulation cell, all direct lattice

vectors L, and the prime in the first sum indicates that I < J is

imposed for L = 0.



Exchange and Correlation Energy

Exc =
∫
dr εxc(r)n(r) = Ω

∑
G

εxc(G)n?(G)

εxc(G) is not local in G space. Calculation in real space requires

very accurate integration scheme.

New definition of Exc

Exc =
Ω

NxNyNz

∑
R

εxc(R)n(R) = Ω
∑
G

ε̃xc(G)n(G)

where ε̃xc(G) is the finite Fourier transform of εxc(R).

Only translations by a multiple of the grid spacing do not change

the total energy. This introduces a small modulation of the energy

hyper surface, known as ”ripples”.



Energy and Force of He Atom



Energy and Force of He Atom

Oxygen atom

PW’91: 40 / 3.2 Ry • PW’91: 50 / 3.85 Ry ×
PW’91: 70 / 4.0 Ry + PBE: 50 / 3.85 ◦



Plane waves: Summary

• Plane waves are delocalised, periodic basis functions

• Plenty of them are needed, however the operations are simple

• The quality of basis set adjusted using a single parametre, the cut-off energy

• Fast Fourier-transform used to efficiently switch between real and reciprocal
space


