Plane Wave Basis Sets

Kohn-Sham Method

$\min _{\{\Phi\}} E_{\mathrm{KS}}\left[\left\{\Phi_{i}(\mathbf{r})\right\}\right]$

$$
\begin{gathered}
\int \Phi_{i}^{\star}(\mathbf{r}) \Phi_{j}(\mathbf{r}) d \mathbf{r}=\delta_{i j} \\
n(\mathbf{r})=\sum_{i=1}^{N} f_{i}\left|\Phi_{i}(\mathbf{r})\right|^{2}
\end{gathered}
$$

Basis Set Methods

Basis set $\left\{\varphi_{\alpha}(\mathbf{r})\right\}_{\alpha=1}^{M}$
Linear expansion of Kohn-Sham orbitals

$$
\Phi_{i}(\mathbf{r})=\sum_{\alpha=1}^{M} c_{\alpha i} \varphi_{\alpha}(\mathbf{r})
$$

Kohn-Sham Method

$$
\begin{gathered}
\min _{\mathrm{c}} E_{\mathrm{KS}}[\mathbf{c}] \\
\sum_{\alpha \beta} c_{\alpha i}^{\star} c_{\beta j} \int \varphi_{\alpha}^{\star}(\mathbf{r}) \varphi_{\beta}(\mathbf{r}) d \mathbf{r}=\sum_{\alpha \beta} c_{\alpha i}^{\star} c_{\beta j} \mathbf{S}_{\alpha \beta}=\delta_{i j} \\
\mathbf{C}^{\dagger} \mathbf{S C}=1 \\
n(\mathbf{r})=\sum_{i=1}^{N} f_{i} \sum_{\alpha \beta} c_{\beta i}^{\star} c_{\alpha i} \varphi_{\beta}^{\star}(\mathbf{r}) \varphi_{\alpha}(\mathbf{r})=\sum_{\alpha \beta} \mathbf{P}_{\alpha \beta} \varphi_{\alpha \beta}(\mathbf{r})
\end{gathered}
$$

Atomic Orbital Basis Sets

Philosophy : Molecules are assemblies of slightly distorted atoms

$$
\begin{gathered}
\varphi_{\alpha}(\mathbf{r})=\varphi_{\alpha}(r) Y_{l m}(\Theta, \phi) \\
\varphi_{\alpha}(r)= \begin{cases}\exp \left[-\alpha r^{2}\right] & \text { Gaussian } \\
\exp [-\alpha r] & \text { Slater }\end{cases}
\end{gathered}
$$

$\varphi_{\alpha}\left(\mathbf{r} ; \mathbf{R}_{I}\right)$: basis functions are attached to nuclear positions

Advantages / Disadvantages AO Basis Sets

+ according to chemical insight
+ small basis sets give already good results
- non-orthogonal
- depend on atomic position
- basis set superposition errors (BSSE)

Plane Waves

Philosophy: Assemblies of atoms are slight distortions to free electrons

$$
\varphi_{\alpha}(\mathbf{r})=\frac{1}{\sqrt{\Omega}} \exp \left[i G_{\alpha} \cdot \mathbf{r}\right]
$$

+ orthogonal
+ independent of atomic positions
+ no BSSE
\pm naturally periodic
- many functions needed

Computational Box

- Box matrix: $\mathrm{h}=\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right]$
- Box volume : $\Omega=\operatorname{det} h$

Lattice Vectors

- Direct Iattice $\mathbf{h}=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right]$
- Direct lattice vectors: $\mathbf{L}=i \cdot \mathbf{a}_{1}+j \cdot \mathbf{a}_{2}+k \cdot \mathbf{a}_{3}$
- Reciprocal lattice $2 \pi\left(\mathbf{h}^{t}\right)^{-1}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right]$

$$
\mathbf{b}_{i} \cdot \mathbf{a}_{j}=2 \pi \delta_{i j}
$$

- Reciprocal lattice vectors: $\mathbf{G}=i \cdot \mathbf{b}_{1}+j \cdot \mathbf{b}_{2}+k \cdot \mathbf{b}_{3}$

Properties of Plane Waves

$$
\varphi_{\mathrm{G}}(\mathrm{r})=\frac{1}{\sqrt{\Omega}} \exp [i \mathrm{G} \cdot \mathrm{r}]
$$

- Plane waves are periodic wrt. box h
- Plane waves are orthonormal

$$
\left\langle\varphi_{\mathrm{G}^{\prime}} \mid \varphi_{\mathrm{G}}\right\rangle=\delta_{\mathrm{G}^{\prime}, \mathrm{G}}
$$

- Plane waves are complete

$$
\psi(\mathbf{r})=\psi(\mathbf{r}+\mathbf{L})=\frac{1}{\sqrt{\Omega}} \sum_{\mathbf{G}} \psi(\mathbf{G}) \exp [i \mathbf{G} \cdot \mathbf{r}]
$$

Local Functions

$$
\begin{aligned}
\phi(\mathbf{r}) & =\phi(r) Y_{l m}(\Theta, \Phi) \\
& =\sum_{\mathbf{G}} \phi(G) \exp [i G r] Y_{l m}(\tilde{\Theta}, \tilde{\Phi})
\end{aligned}
$$

Bessel transform

$$
\phi(G)=4 \pi(-i)^{l} \int_{0}^{\infty} d r r^{2} \phi(r) j_{l}(G r)
$$

j_{l} : Spherical Bessel functions of the first kind

Position Dependence

Translation

$$
\begin{aligned}
& \phi(\mathbf{r}) \longrightarrow \phi\left(\mathbf{r}-\mathbf{R}_{I}\right) \\
& \phi\left(\mathbf{r}-\mathbf{R}_{I}\right)= \sum_{\mathbf{G}} \phi(\mathbf{G}) \exp \left[i \mathbf{G} \cdot\left(\mathbf{r}-\mathbf{R}_{I}\right)\right] \\
&= \sum_{\mathbf{G}} \phi(\mathbf{G}) \exp [i \mathbf{G} \cdot \mathbf{r}] \exp \left[-i \mathbf{G} \cdot \mathbf{R}_{I}\right]
\end{aligned}
$$

Structure Factor

$$
S_{I}(\mathbf{G})=\exp \left[-i \mathbf{G} \cdot \mathbf{R}_{I}\right]
$$

Derivatives

$$
\frac{\partial \phi\left(\mathbf{r} ; \mathbf{R}_{I}\right)}{\partial \mathbf{R}_{I, s}}=-i \sum_{\mathbf{G}} \mathbf{G}_{s} \phi(\mathbf{G}) \exp [i \mathbf{G} \cdot \mathbf{r}] S_{I}(\mathbf{G})
$$

Kinetic Energy

Kinetic energy operator is diagonal in the plane wave basis

$$
-\frac{1}{2} \nabla^{2} \varphi_{\mathbf{G}}(\mathbf{r})=-\frac{1}{2}(i G)^{2} \frac{1}{\sqrt{\Omega}} \exp [i \mathbf{G} \cdot \mathbf{r}]=\frac{1}{2} G^{2} \varphi_{\mathbf{G}}(\mathbf{r})
$$

$$
E_{\mathrm{kin}}(\mathrm{G})=\frac{1}{2} G^{2}
$$

Cutoff: Finite Basis Set

Basis set size depends on volume of box and cutoff only

Real Space Grid Sampling Theorem

- Sampling interval $\Delta=\frac{L}{N}$
- Nyquist critical frequency $f_{c}=\frac{1}{2 \Delta}$

For a given plane wave cutoff (frequency) there is a minimum number of equidistant real space grid points needed for the same accuracy.

Real space grid: $\quad \mathbf{R}_{i}=(i-1) \Delta$

Fast Fourier Transform

$$
\psi(\mathbf{G}) \longleftrightarrow \psi(\mathbf{R})
$$

The information contained in $\psi(\mathbf{G})$ and $\psi(\mathbf{R})$ are equivalent.

Transform from $\psi(\mathbf{G})$ to $\psi(\mathbf{R})$ and back is done using Fourier methods. If the number of grid points can be decomposed into small prime numbers fast Fourier transform techniques can be used.

Fourier transform	N^{2} operations
fast Fourier transform	$N \log [N]$ operations

Integrals

$$
\begin{aligned}
I & =\int_{\Omega} A^{\star}(\mathbf{r}) B(\mathbf{r}) d \mathbf{r} \\
& =\sum_{\mathbf{G G}^{\prime}} A^{\star}(\mathbf{G}) B(\mathbf{G}) \int \exp [-i \mathbf{G} \cdot \mathbf{r}] \exp \left[i \mathbf{G}^{\prime} \cdot \mathbf{r}\right] d \mathbf{r} \\
& =\sum_{\mathbf{G G}} A^{\star}(\mathbf{G}) B(\mathbf{G}) \Omega \delta_{\mathbf{G G}^{\prime}} \\
& =\Omega \sum_{\mathbf{G}} A^{\star}(\mathbf{G}) B(\mathbf{G})
\end{aligned}
$$

Parseval's theorem

$$
\Omega \sum_{\mathbf{G}} A^{\star}(\mathbf{G}) B(\mathbf{G})=\frac{\Omega}{N} \sum_{i} A^{\star}\left(\mathbf{R}_{i}\right) B\left(\mathbf{R}_{i}\right)
$$

Electron density

$$
\begin{aligned}
n(\mathbf{r})=\sum_{i} f_{i}\left|\Phi_{i}(\mathbf{r})\right|^{2} & =\frac{1}{\Omega} \sum_{i} f_{i} \sum_{\mathbf{G}, \mathbf{G}^{\prime}} c_{i}^{\star}(\mathbf{G}) c_{i}\left(\mathbf{G}^{\prime}\right) \exp \left[i\left(\mathbf{G}-\mathbf{G}^{\prime}\right) \cdot \mathbf{r}\right] \\
n(\mathbf{r}) & =\sum_{\mathbf{G}=-2 G_{\max }}^{2 G_{\max }} n(\mathbf{G}) \exp [i \mathbf{G} \cdot \mathbf{r}]
\end{aligned}
$$

The electron density can be expanded exactly in a plane wave basis with a cutoff four times the basis set cutoff.

$$
N_{\mathrm{PW}}\left(4 E_{\text {cut }}\right)=8 N_{\mathrm{PW}}\left(E_{\text {cut }}\right)
$$

Comparison to AO Basis Set

Plane Waves:

$$
\begin{aligned}
\frac{1}{2} G^{2} & <E_{\text {cut }} \\
\frac{1}{2} G^{\prime 2} & <E_{\text {cut }} \\
\frac{1}{2}\left(G+G^{\prime}\right)^{2} & <\left(\sqrt{E_{\text {cut }}}+\sqrt{E_{\text {cut }}}\right)^{2}=4 E_{\text {cut }}
\end{aligned}
$$

Atomic orbitals: every product results in a new function

$$
\varphi_{\alpha}(\mathbf{r}-\mathbf{A}) \varphi_{\beta}(\mathbf{r}-\mathbf{B})=\varphi_{\gamma}(\mathbf{r}-\mathbf{C})
$$

Linear dependence for plane waves vs. quadratic dependence for AO basis sets.

Operators

Matrix representation of operators in Kohn-Sham theory

$$
\mathrm{O}\left(\mathrm{G}, \mathrm{G}^{\prime}\right)=\langle\mathrm{G}| \mathcal{O}\left|\mathbf{G}^{\prime}\right\rangle
$$

Kinetic Energy Operator

$$
\mathrm{T}_{\mathrm{G}, \mathrm{G}^{\prime}}=\langle\mathrm{G}|-\frac{1}{2} \nabla^{2}\left|\mathrm{G}^{\prime}\right\rangle=\frac{1}{2} G^{2} \delta_{\mathrm{G}, \mathrm{G}^{\prime}}
$$

Local Operators

$$
\begin{aligned}
\left\langle\mathbf{G}^{\prime}\right| \mathcal{O}(\mathbf{r})\left|\mathbf{G}^{\prime \prime}\right\rangle & =\frac{1}{\Omega} \sum_{\mathbf{G}} \mathbf{O}(\mathbf{G}) \int e^{\left[-i \mathbf{G}^{\prime} \cdot \mathbf{r}\right]} e^{[i \mathbf{G} \cdot \mathbf{r}]} e^{\left[i \mathbf{G}^{\prime \prime} \cdot \mathbf{r}\right]} d \mathbf{r} \\
& =\frac{1}{\Omega} \sum_{\mathbf{G}} \mathbf{O}(\mathbf{G}) \int e^{\left[i\left(\mathbf{G}-\mathbf{G}^{\prime}+\mathbf{G}^{\prime \prime}\right) \cdot \mathbf{r}\right]} d \mathbf{r} \\
& =\frac{1}{\Omega} \mathbf{O}\left(\mathbf{G}^{\prime}-\mathbf{G}^{\prime \prime}\right)
\end{aligned}
$$

Local operators can be expanded in plane waves with a cutoff four times the basis set cutoff.

Applying Operators

$$
B(\mathrm{G})=\sum_{\mathbf{G}^{\prime}} \mathrm{O}\left(\mathbf{G}, \mathrm{G}^{\prime}\right) A\left(\mathrm{G}^{\prime}\right)
$$

Local Operators: Convolution

$$
B(\mathrm{G})=\sum_{\mathrm{G}^{\prime}} \frac{1}{\Omega} \mathrm{O}\left(\mathrm{G}-\mathrm{G}^{\prime}\right) A\left(\mathrm{G}^{\prime}\right)=(\mathrm{O} * A)(\mathrm{G})
$$

Convolution in frequency space transforms to product in real space

$$
B\left(\mathbf{R}_{i}\right)=\mathbf{O}\left(\mathbf{R}_{i}\right) A\left(\mathbf{R}_{i}\right)
$$

Kohn-Sham Orbitals

- KS-orbitals (for periodic system)

Bloch theorem

$$
\begin{aligned}
\Phi_{i}(\mathbf{r}, \mathbf{k}) & =\exp [i \mathbf{k} \cdot \mathbf{r}] u_{i}(\mathbf{r}, \mathbf{k}) \\
u_{i}(\mathbf{r}, \mathbf{k}) & =u_{i}(\mathbf{r}+\mathbf{L}, \mathbf{k})
\end{aligned}
$$

- 「 - point approximation:
$\mathbf{k}=\mathbf{0}$ only point considered in the Brillouin zone.
- 「 - point KS-orbitals

$$
\begin{aligned}
\Phi_{i}(\mathbf{r}) & =u_{i}(\mathbf{r}) \\
& =\frac{1}{\sqrt{\Omega}} \sum_{\mathbf{G}} c_{i}(\mathbf{G}) \exp [i \mathbf{G} \cdot \mathbf{r}]
\end{aligned}
$$

Kohn-Sham Energy

$$
E_{\mathrm{KS}}=E_{\mathrm{kin}}+E_{\mathrm{PP}}+E_{\mathrm{ES}}+E_{\mathrm{XC}}
$$

$E_{\text {kin }}$ Kinetic energy
$E_{\text {PP }}$ Pseudopotential energy
$E_{\text {ES }}$ Electrostatic energy (sum of electron-electron interaction + nuclear core-electron interaction + ion-ion interaction)

Exc Exchange-correlation energy

Kinetic Energy

$$
\begin{aligned}
E_{\text {kin }} & =\sum_{i} f_{i}\left\langle\Phi_{i}\right|-\frac{1}{2} \nabla^{2}\left|\Phi_{i}\right\rangle \\
& =\sum_{i} \sum_{\mathbf{G G}^{\prime}} c_{i}^{*}(\mathbf{G}) c_{i}\left(\mathbf{G}^{\prime}\right)\langle\mathbf{G}|-\frac{1}{2} \nabla^{2}\left|\mathbf{G}^{\prime}\right\rangle \\
& =\sum_{i} \sum_{\mathbf{G G}^{\prime}} c_{i}^{*}(\mathbf{G}) c_{i}\left(\mathbf{G}^{\prime}\right) \Omega \frac{1}{2} \mathbf{G}^{2} \delta_{\mathbf{G}, \mathbf{G}^{\prime}} \\
& =\frac{\Omega}{2} \sum_{i} \sum_{\mathbf{G}} \mathbf{G}^{2}\left|c_{i}(\mathbf{G})\right|^{2}
\end{aligned}
$$

Electrostatic Energy

$$
E_{\mathrm{ES}}=\frac{1}{2} \iint d \mathbf{r} d \mathbf{r}^{\prime} \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+\sum_{I} \int d \mathbf{r} V_{\mathrm{Core}}^{I}(\mathbf{r}) n(\mathbf{r})+\frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}
$$

Gaussian charge distributions

$$
n_{\mathrm{C}}^{I}(\mathbf{r})=-\frac{Z_{I}}{\left(\mathrm{R}_{I}^{\mathrm{c}}\right)^{3}} \pi^{-3 / 2} \exp \left[-\left(\frac{\mathbf{r}-\mathbf{R}_{I}}{\mathrm{R}_{I}^{\mathrm{C}}}\right)^{2}\right]
$$

Electrostatic potential of n_{C}^{I}

$$
V_{\text {Core }}^{I}(\mathbf{r})=\int d \mathbf{r}^{\prime} \frac{n_{\mathrm{C}}^{I}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=-\frac{Z_{I}}{\left|\mathbf{r}-\mathbf{R}_{I}\right|} \operatorname{erf}\left[\frac{\left|\mathbf{r}-\mathbf{R}_{I}\right|}{\mathrm{R}_{I}^{\mathrm{C}}}\right]
$$

Electrostatic Energy

$$
\begin{aligned}
E_{\mathrm{ES}}= & \frac{1}{2} \iint d \mathbf{r} d \mathbf{r}^{\prime} \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+\frac{1}{2} \iint d \mathbf{r} d \mathbf{r}^{\prime} \frac{n_{\mathrm{C}}(\mathbf{r}) n_{\mathrm{C}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
& +\iint d \mathbf{r} d \mathbf{r}^{\prime} \frac{n_{\mathrm{C}}(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
& +\frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}-\frac{1}{2} \iint d \mathbf{r} d \mathbf{r}^{\prime} \frac{n_{\mathrm{C}}(\mathbf{r}) n_{\mathrm{C}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
\end{aligned}
$$

where $n_{\mathrm{C}}(\mathbf{r})=\sum_{I} n_{\mathrm{C}}^{I}(\mathbf{r})$.

The first three terms can be combined to the electrostatic energy of a total charge distribution

$$
n_{\mathrm{tot}}(\mathbf{r})=n(\mathbf{r})+n_{\mathrm{C}}(\mathbf{r})
$$

and the other two terms calculated analytically.

Electrostatic Energy

$$
\begin{aligned}
E_{\mathrm{ES}}= & \frac{1}{2} \iint d \mathbf{r} d \mathbf{r}^{\prime} \frac{n_{\mathrm{tot}}(\mathbf{r}) n_{\mathrm{tot}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
& +\frac{1}{2} \sum_{I \neq J} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|} \operatorname{erfc}\left[\frac{\left|\mathbf{R}_{I}-\mathbf{R}_{J}\right|}{\sqrt{\mathrm{R}_{I}^{2}+\mathrm{R}_{J}^{\mathrm{c}^{2}}}}\right] \\
& -\sum_{I} \frac{1}{\sqrt{2 \pi}} \frac{Z_{I}^{2}}{R_{I}^{\mathrm{c}}}
\end{aligned}
$$

- 1. Term: Long-ranged forces
- 2. Term: Short-ranged two-center terms
- 3. Term: One-center term

Periodic Systems

Plane wave expansion of $n_{\text {tot }}$

$$
\begin{aligned}
n_{\mathrm{tot}}(\mathbf{G}) & =n(\mathbf{G})+\sum_{I} n_{\mathrm{C}}^{I}(\mathbf{G}) S_{I}(\mathbf{G}) \\
& =n(\mathbf{G})-\frac{1}{\Omega} \sum_{I} \frac{Z_{I}}{\sqrt{4 \pi}} \exp \left[-\frac{1}{2} G^{2} R_{I}^{\mathrm{c}^{2}}\right] S_{I}(\mathbf{G})
\end{aligned}
$$

Criteria for parameter R_{I}^{C} : PW expansion of n_{C}^{I} has to be converged with density cutoff.

Poisson equation

$$
\nabla^{2} V_{\mathrm{H}}(\mathbf{r})=-4 \pi n_{\mathrm{tot}}(\mathbf{r})
$$

for periodic boundary conditions

$$
V_{\mathrm{H}}(\mathrm{G})=4 \pi \frac{n_{\mathrm{tot}}(\mathbf{G})}{G^{2}}
$$

$V_{\mathrm{H}}(\mathbf{G})$ is a local operator with same cutoff as $n_{\text {tot }}$.

Periodic Systems

$$
E_{\mathrm{ES}}=2 \pi \Omega \sum_{\mathrm{G} \neq 0} \frac{\left|n_{\mathrm{tot}}(\mathrm{G})\right|^{2}}{G^{2}}+E_{\mathrm{ovrl}}-E_{\mathrm{Self}}
$$

where

$$
E_{\mathrm{ovrl}}=\sum_{I, J}^{\prime} \sum_{\mathbf{L}} \frac{Z_{I} Z_{J}}{\left|\mathbf{R}_{I}-\mathbf{R}_{J}-\mathbf{L}\right|} \operatorname{erfc}\left[\frac{\left|\mathbf{R}_{I}-\mathbf{R}_{J}-\mathbf{L}\right|}{\sqrt{\mathrm{R}_{I}^{\mathrm{c}^{2}}+\mathrm{R}_{J}^{\mathrm{c}^{2}}}}\right]
$$

and

$$
E_{\text {self }}=\sum_{I} \frac{1}{\sqrt{2 \pi}} \frac{Z_{I}^{2}}{R_{I}^{\mathrm{c}}}
$$

Sums expand over all atoms in the simulation cell, all direct lattice vectors \mathbf{L}, and the prime in the first sum indicates that $I<J$ is imposed for $\mathrm{L}=0$.

Exchange and Correlation Energy

$$
E_{\times c}=\int d \mathbf{r} \varepsilon_{\times c}(\mathbf{r}) n(\mathbf{r})=\Omega \sum_{\mathbf{G}} \varepsilon_{\times c}(\mathbf{G}) n^{\star}(\mathbf{G})
$$

$\varepsilon_{x c}(\mathbf{G})$ is not local in G space. Calculation in real space requires very accurate integration scheme.

New definition of $E_{\text {xc }}$

$$
E_{\mathrm{xc}}=\frac{\Omega}{N_{\mathrm{x}} N_{\mathrm{y}} N_{\mathrm{z}}} \sum_{\mathbf{R}} \varepsilon_{\mathrm{xc}}(\mathbf{R}) n(\mathbf{R})=\Omega \sum_{\mathbf{G}} \tilde{\varepsilon}_{\mathrm{xc}}(\mathbf{G}) n(\mathbf{G})
$$

where $\tilde{\varepsilon}_{\times c}(\mathbf{G})$ is the finite Fourier transform of $\varepsilon_{x c}(\mathbf{R})$.
Only translations by a multiple of the grid spacing do not change the total energy. This introduces a small modulation of the energy hyper surface, known as "ripples".

Energy and Force of He Atom

Energy and Force of He Atom

Oxygen atom

PW'91: 40 / 3.2 Ry •
PW'91: 70 / 4.0 Ry +

$$
\begin{array}{r}
\text { PW'91: } 50 / 3.85 R y \times \\
\text { PBE: } 50 / 3.85 \circ
\end{array}
$$

Plane waves: Summary

- Plane waves are delocalised, periodic basis functions
- Plenty of them are needed, however the operations are simple
- The quality of basis set adjusted using a single parametre, the cut-off energy
- Fast Fourier-transform used to efficiently switch between real and reciprocal space

