
Pseudo potentials



Why use pseudo potentials?

• Reduction of basis set size

effective speedup of calculation

• Reduction of number of electrons

reduces the number of degrees of freedom

For example in Pt: 10 instead of 78

• Unnecessary “Why bother? They are inert anyway...”

• Inclusion of relativistic effects

relativistic effects can be included ”partially” into effective

potentials



Why use pseudo potentials?
Estimate for number of plane waves

plane wave cutoff
l

most localized function

1s Slater type function ≈ exp[−Zr]
Z: effective nuclear charge

φ1s(G) ≈
16πZ5/2

G2 + Z2

Cutoff Plane waves
H 1 1
Li 4 8
C 9 27
Si 27 140
Ge 76 663



Pseudo potentials
What is it?

• Replacement of the all-electron, −Z/r problem with a
Hamiltonian containing an effective potential

• It should reproduce the necessary physical properties of the full
problem at the reference state

• The potential should be transferable, i. e. also be accurate in
different environments

The construction consists of two steps of approximations

• Frozen core approximation

• Pseudisation



Frozen core approximation

• Core electrons are chemically inert

• Core/Valence separation is often not clear

in plane wave calculations: core = all filled shells

• Core wavefunctions are transfered from atomic reference

calculation

• Core electrons of different atoms do not overlap



Remaining problems

• Valence wavefunctions have to be orthogonalized to core states
→ nodal structures → high plane wave cutoff

• Pseudo potential should produce node-less functions and include
Pauli repulsion

• Pseudo potential replaces Hartree and XC potential due to the
core electrons

• XC functionals are not linear: approximation

EXC(nc + nv) = EXC(nc) + EXC(nv)

This assumes that core and valence electrons do not overlap.
This restriction can be overcome with the ”non–linear core
correction” (NLCC) discussed later.



Atomic pseudo potentials

n(r) = nc(r) + nv(r)

Valence Kohn–Sham Equations

(
T + V (r, r′) + VH(nv) + VXC(nv)

)
Φv

i (r) = εiΦ
v
i (r)

Pseudo potential V (r, r′) has to be chosen such that the main

properties of the atom are reproduced.



Pseudization of Valence Wavefunctions



General Recipe

1. Atomic all–electron calculation (reference state)

⇒ Φv
i (r) and εi.

2. Pseudize Φv
i ⇒ ΦPS

i

3. Calculate potential from

(T + Vi(r))ΦPS
i (r) = εiΦ

PS
i (r)

4. Calculate pseudo potential by unscreening of Vi(r)

V PS
i (r) = Vi(r)− VH(nPS)− VXC(nPS)

V PS
i is state dependent !



Semi-local Pseudo potentials

V PS(r, r′) =
∑
l

V PS
l (r) | Ylm(r̂)〉〈Ylm(r̂′) |

where Ylm are spherical harmonics.

If there is more than one valence state per angular momentum, the

procedure has to be slightly adapted. But there is still only one

V PS
l . This procedure generates a pseudo potential per occupied

angular momentum in the reference state.



Norm-Conserving Pseudo potentials

Hamann-Schlüter-Chiang-Recipe (HSC) Conditions

D.R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)

1. Real and pseudo valence eigenvalues agree for a chosen

prototype atomic configuration. εl = ε̂l

2. Real and pseudo atomic wave functions agree beyond a chosen

core radius rc.

Ψl(r) = Φl(r) for r ≥ rc



3. The integrals from 0 to R of the real and pseudo charge densities

agree for R ≥ rc for each valence state (norm conservation).

〈Φl|Φl〉R = 〈Ψl|Ψl〉R for R ≥ rc

where

〈Φ|Φ〉R =
∫ R

0
r2|φ(r)|2dr

4. The logarithmic derivatives of the real and pseudo wave function

and their first energy derivatives agree for r ≥ rc.

Property 3) and 4) are related through

−
1

2

[
(rΦ)2

d

dε

d

dr
lnΦ

]
R

=
∫ R

0
r2|Φ|2dr



Recipes to Construct Norm-conserving Pseudo
potentials

• Bachelet-Hamann-Schüter (BHS) Form

G.B. Bachelet et al., Phys. Rev. B, 26, 4199 (1982)

Recipe and analytic form of V PS
l

• Kerker Recipe G.P. Kerker, J. Phys. C 13, L189 (1980)

analytic pseudization function

• D. Vanderbilt, Phys. Rev. B, 32, 8412 (1985)

• Kinetic energy optimized pseudo potentials
A.M. Rappe et al., Phys. Rev. B, 41, 1227 (1990)

J.S. Lin et al., Phys. Rev. B, 47, 4174 (1993)



Troullier–Martins Recipe
N. Troullier and J.L. Martins, Phys. Rev. B, 43, 1993 (1991)

ΦPS
l (r) = rl+1ep(r) r ≤ rc

p(r) = c0 + c2r2 + c4r4 + c6r6 + c8r8 + c10r10 + c12r12

determine cn from

• norm–conservation

• smoothness at rc (for m = 0 . . .4)
dmΦ
drm

∣∣∣
r=rc−

= dmΦ
drm

∣∣∣
r=rc+

• dΦ
dr

∣∣∣
r=0

= 0



Separation of Local and Nonlocal Parts

V PS(r, r′) =
∞∑

L=0

V PS
L (r)|YL〉〈YL|

Approximation: all potentials with L > Lmax are equal to V PS
loc

V PS(r, r′) =
Lmax∑
L=0

V PS
L (r)|YL〉〈YL|+

∞∑
L=Lmax+1

V PS
loc (r)|YL〉〈YL|

=
Lmax∑
L=0

(
V PS

L (r)− V PS
loc (r)

)
|YL〉〈YL|+

∞∑
L=0

V PS
loc (r)|YL〉〈YL|

=
Lmax∑
L=0

(
V PS

L (r)− V PS
loc (r)

)
|YL〉〈YL|+ V PS

loc (r)



Final Form

V PS(r, r′) = V PS
loc (r) +

Lmax∑
L=0

∆V PS
L (r)|YL〉〈YL|

• Local pseudo potential V PS
loc

• Non-local pseudo potential ∆V PS
L

• Any L quantum number can have a non-local part









Non-Local PP in PW Calculations

EPS =
∑
L

∑
i

fi

∫
[Φi | YL](r) ∆V PS

L (r) [YL | Φi](r) dr

[Φi | YL](r) =
∫

Φi(r)YL(̂r)dr̂

Integral depends on r.



Gauss–Hermite Integration

Enl
PS =

∑
L

∑
i

fi

∑
k

wk∆V PS
L (rk) ([Φi | YL](rk))

2

Accurate integration requires ≈ 15 - 25 points.

For an atom with s and p non-local potential this requires the

calculation of 60 - 100 times number of states integrals [Φi | YL](r).



Basis Set Expansion

Resolution of identity 1 =
∑

n|ϕn〉〈ϕn| for a complete orthonormal

basis set {ϕn}.

EPS =
∑
L

∑
i

fi

∑
nm
〈Φi | ϕn〉∫

[ϕn | YL](r) V PS
L (r) [YL | ϕm](r) dr〈ϕm | Φi〉



Using [ϕn | YL](r) = ϕn(r) we can calculate the basis set expansion

of the pseudo potential

V PS
L,nm =

∫
ϕn(r)V

PS
L (r)ϕm(r)dr

and get

EPS =
∑
L

∑
i

fi

∑
nm
〈Φi | ϕn〉V PS

L,nm〈ϕm | Φi〉

Typical basis set expansions contain only a few functions.



Kleinman–Bylander Form

Basis set expansion with the following approximation for the identity:

1 =
∑
L

| ϕL〉〈∆VLϕL |
〈ϕLδVLϕL〉

where ϕL is the pseudo–atomic wavefunction from the reference

calculation.

|∆VLϕL〉 is localized within rc.



Kleinman–Bylander Form

EPS =
∑
L

∑
i

fi〈Φi | δVLϕL〉ωL〈δVLϕL | Φi〉

where

ωL = 〈ϕLδVLϕL〉

For an atom with s and p non-local potential this requires the

calculation of 4 times number of states integrals 〈δVLϕL | Φi〉
Generalization of the Kleinman–Bylander form to more than 1

reference function by Blöchl (1990) and Vanderbilt (1990).



Ghost States

Problem: in Kleinman–Bylander form, the node-less wfn is no

longer the solution with the lowest energy.

Solution: carefully tune the local part of the pseudo potential until

the ghost states disappear
How to find host states: Look for following properties

• Deviations of the logarithmic derivatives of the energy of the KB–pseudo
potential from those of the respective semi-local pseudo potential or
all–electron potential.

• Comparison of the atomic bound state spectra for the semi-local and
KB–pseudo potentials.

• Ghost states below the valence states are identified by a rigorous criteria by
Gonze et al.



Dual Space Pseudo potentials
S. Goedecker et al., Phys. Rev. B, 54 1703 (1996)

C. Hartwigsen et al., Phys. Rev. B, 58 3641 (1998)

• Functional form of pseudo potential: local part + fully separable

non–local part

• All functions are expanded in Gaussians

• All free parameters are globally optimized



Ultra–soft Pseudo potentials and PAW method

• Many elements require high cutoff for plane wave calculations

– First row elements: O, F

– Transition metals: Cu, Zn

– f elements: Ce

• relax norm-conservation condition∫
nPS(r)dr +

∫
Q(r)dr = 1



• Augmentation functions Q(r) depend on environment.

• No full un-screening possible, Q(r) has to be recalculated for

each atom and atomic position.

• Complicated orthogonalization and force calculations.

• Allows for larger rc, reduces cutoff for all elements to about 30

Rydberg.



Non-Linear Core Correction (NLCC)

For many atoms (e.g. alkali atoms, transition metals) core states

overlap with valence states. Linearization assumption for XC energy

breaks down.

• Add additional states to valence

– adds more electrons

– needs higher cutoff

• Add core charge to valence charge in XC energy ⇒ non–linear

core correction (NLCC)

S.G. Louie et al., Phys. Rev. B, 26 1738 (1982)



Non-Linear Core Correction (NLCC)

Exc = Exc(n + ñcore) where ñcore(r) = ncore(r) if r > r0



Non-Linear Core Correction (NLCC)

The total core charge of the system depends on the atomic

positions.

ñcore(G) =
∑
I

ñI
core(G)SI(G)

This leads to additional terms in the derivatives wrt to nuclear

positions and the box matrix (for the pressure).

∂Exc

∂RI,s
= −Ω

∑
G

iGsV
?
xc(G)ñI

core(G)SI(G)



Specification of Pseudo potentials

• The pseudo potential recipe used and for each l value rc and the

atomic reference state

• The definition of the local potential and which angular

momentum state have a non–local part

• For Gauss–Hermit integration: the number of integration points

• Was the Kleinman–Bylander scheme used ?

• NLCC: definition of smooth core charge and rloc



Spin Polarized Calculations and Gradient
Corrections

Spin Polarization If the frozen core approximation is valid, i.e.

there is no spin polarization of core states, we can use the same

pseudo potentials

Different Functionals Pseudo potentials in plane wave calculations

are usually generated with the same functional as later used in

the molecular calculation.



Testing of Pseudo potentials

• calculation of other atomic states

• calculation of transferability functions, logarithmic derivatives,

hardness

• calculation of small molecules, compare to all electron

calculations (geometry, harmonic frequencies, dipole moments)

• check of basis set convergence (cutoff requirements)

• calculation of test systems





Pseudo potentials: Summary

• Pseudo potential are necessary when using plane wave basis sets in order to
keep the number of the basis function manageable

• Pseudo potentials are generated at the reference state; transferability is the
quantity describing the accuracy of the properties at other conditions

• The mostly used scheme in plane wave calculations is the Troullier-Martins
pseudo potentials in the fully non-local, Kleinman-Bylander form

• Non-linear core correction is need if the core and valence electron densities
overlap excessively

• Once created, a pseudo potential must be tested, tested, tested!!!


