Properties

MD simulation: output

- Trajectory of atoms
- positions: e.g. diffusion, mass transport
- velocities: e.g. v-v-autocorrelation spectrum
- Energies
- temperature
- displacement
- fluctuations

Mean square displacement, diffusion

- mean square displacement

$$
\operatorname{msd}(t)=\left\langle\Delta \mathbf{R}(t)^{2}\right\rangle=\left\langle[\mathbf{R}(t)-\mathbf{R}(0)]^{2}\right\rangle
$$

- diffusion coefficient (Einstein relation)

$$
D=\frac{1}{2 d} \lim _{t \rightarrow \infty}\left\langle\Delta \mathbf{R}(t)^{2}\right\rangle
$$

alternative definition (Green-Kubo formula)

$$
D=\int_{t=0}^{\infty}\left\langle v_{x}(t) v_{x}(0)\right\rangle d t
$$

Vibrational spectrum

- Velocity-velocity autocorrelation

$$
C_{v}(t)=\int_{t=0}^{\infty}\left\langle v_{x}(t) v_{x}(0)\right\rangle d t
$$

- Its cosine transform gives the vibrational, or power spectrum

$$
I(\omega)=\int_{t} C_{v}(t) e^{\mathrm{i} \omega t} d t
$$

Vibrational (harmonic) frequencies

- The vibrational frequencies can be evaluated either using the finite differences (VIBRATIONAL ANALYSIS in CPMD) or perturbation theory (see e.g. the work of Stefano Baroni for calculating phonon frequencies in solids)
- Always remember to relax the ionic structure first; the more better the convergence, the more accurate will your frequencies be, especially the lowest ones

Electronic density of states

- $n(E)$ is the number of electrons in the energy range $E \ldots E+\delta E$
- Can be evaluated via

$$
n(E)=\sum_{i, \mathbf{k}} \delta\left(E-\varepsilon_{i, \mathbf{k}}\right)
$$

- in practise δ functions have to be broadened e.g. with Gaussian functions
- in CPMD: $E_{i, \mathrm{k}}$ can be obtained with KOHN-SHAM ENERGIES

Kohn-Sham states

- Although not necessarily physical, it is often useful to plot them
- In CPMD: $\psi_{i, \mathrm{k}}$ can be obtained with KOHN-SHAM ENERGIES followed with a run employing either CUBEFILE ORBITALS of RHOOUT BANDS

Energy level diagram

- Example: Water molecule

Local density of states

- Project the Kohn-Sham orbitals on the localised (pseudo) wave functions around the central atom
- Yields information about the energetic location of the orbitals and molecular hybrids formed by the atom
- Example: Hydroxyl on Pt(111) surface

Atoms In Molecules, AIM
 Bader's zero flux surface

- Surface partitioning the charge to different atoms
- Based on the "zero flux", i.e. finding locations where $\nabla n \cdot \mathbf{u}=0$, where \mathbf{u} is the normal (unit) vector of the surface

Conductivity
 Optical conductivity

- The optical conductivity according to the Kubo-Greenwood formula

$$
\left.\sigma(\omega)=\frac{2 \pi e^{2}}{3 m^{2} V_{\mathrm{cell}}} \frac{1}{\omega} \sum_{i, j}\left(f_{i}-f_{j}\right)\left|\left\langle\psi_{i}\right| \widehat{\mathbf{p}}\right| \psi_{j}\right\rangle\left.\right|^{2} \delta\left(\varepsilon_{i}-\varepsilon_{j}-\hbar \omega\right)
$$

Electron localisation function

- Derived from Taylor expansion of the conditional probability of finding a second electron with the same spin close to a reference electron
- Normalised to the uniform electron gas

$$
\begin{gathered}
\mathrm{ELF}=\frac{1}{1+\left(D_{\sigma} / D_{\sigma}^{0}\right)^{2}} \\
D_{\sigma}=\tau_{\sigma}-\frac{1}{4} \frac{\left(\nabla n_{\sigma}\right)^{2}}{n_{\sigma}} \quad \tau_{\sigma}=\sum_{i}\left|\nabla \psi_{i}\right|^{2} \quad D_{\sigma}^{0}=\frac{3}{5}\left(6 \pi^{2}\right)^{2 / 3} n_{\sigma}^{5 / 3}
\end{gathered}
$$

- ELF is limited to $0 \leq E L F \leq 1$
$-E L F=1:$ Perfect localisation
- ELF $=1 / 2$: Uniform electron gas

Modern theory of polarisation

- Recently large interest was paid to polarisation in crystals
- Problem: periodicity makes use of position operator $\widehat{\mathbf{r}}$ impossible in solids
- Solution: Berry phases
- Yielded as "side products" e. g. Wannier centres, Wannier orbitals

Position operator in periodic systems

- Wave functions are periodic

$$
\psi(\mathbf{r})=\psi(\mathbf{r}+\mathbf{L})
$$

- Result of operator acting on wave function has also to be periodic

$$
\mathcal{O} \psi(\mathbf{r})=\phi(\mathbf{r})=\phi(\mathbf{r}+\mathbf{L})
$$

- Result of operator acting on wave function has also to be periodic

$$
\mathbf{r} \psi(\mathbf{r})=(\mathbf{r}+\mathbf{L}) \psi(\mathbf{r}+\mathbf{L})
$$

- The expectation value of the position operator of a wave function using PBC

$$
\langle\widehat{X}\rangle=\frac{L}{2 \pi} \Im \ln \langle\psi| e^{i(2 \pi / L) \hat{X}}|\psi\rangle
$$

$\langle\widehat{X}\rangle$ is defined only modulo \mathbf{L}

Polarisation in periodic systems

- Total polarisation

$$
P_{\mathrm{tot}}=P_{\mathrm{nuc}}+P_{\mathrm{el}}
$$

- Electronic contribution (Г-only)

$$
\begin{gathered}
P_{\mathrm{el}}^{\alpha}=-\frac{2 e}{2 \pi\left|\mathbf{G}_{\alpha}\right|} \Im \ln \operatorname{det} S^{\alpha} \\
S_{m n}^{\alpha}=\left\langle\phi_{m}\right| e^{-\mathrm{i} \mathrm{G}_{\alpha} \mathbf{r}_{\alpha}}\left|\phi_{n}\right\rangle
\end{gathered}
$$

- infrared adsorption coefficient

$$
\alpha(\omega)=\frac{4 \pi \omega \tanh (\beta \hbar \omega / 2)}{3 \hbar n(\omega) c \Omega} \int_{t=-\infty}^{\infty}\langle\mathbf{P}(t) \cdot \mathbf{P}(0)\rangle e^{i \omega t} d t
$$

- $n(\omega)=$ refractive index, $c=$ speed of light, $\Omega=$ volume

Wannier orbitals

- Kohn-Sham energy is invariant upon a unitary rotation of the occupied orbitals
- Use this to define localised orbitals by minimising the spread Ω

$$
\Omega=2 \sum_{i}\left(\left\langle\phi_{i}\right| \mathbf{r}^{2}\left|\phi_{i}\right\rangle-\left\langle\phi_{i}\right| \mathbf{r}\left|\phi_{i}\right\rangle^{2}\right)
$$

- Leads to spread

$$
\Omega_{i}=\frac{2}{(2 \pi)^{2}} \sum_{I=1}^{6} \omega_{I}\left(1-\left|z_{\alpha, i}\right|\right)
$$

where ω_{I} are weights depending on cell symmetry and

$$
z_{\alpha, i}=\int_{\mathbf{r}} \exp \left(\mathrm{iG}_{\alpha} \cdot \mathbf{r}\right)\left|\phi_{i}(\mathbf{r})\right|^{2} d \mathbf{r}
$$

- Centre of orbital

$$
r_{\alpha, i}=-\sum_{\beta} \frac{\mathbf{h}_{\alpha \beta}}{2 \pi} \Im \ln z_{\alpha, i}
$$

- Using the minimisation of Ω one obtains "maximally localised orbitals"

Wannier centres, orbitals
 Example: Water

- Dipole moment of water molecules in different environments

	$d_{\mathrm{OO}}(\hat{\mathrm{A}})$	$d_{\mathrm{OH}}(\hat{\mathrm{A}})$	$\mu(\mathrm{D})$
Monomer		0.97	1.87
Dimer	2.94	0.98	2.15
Liquid	2.78	0.99	2.95

Raman spectrum

With CPMD Raman spectrum can be evaluated in two ways:

- Harmonic analyasis: Calculate the vibrational normal modes
(VIBRATIONAL ANALYSIS) and displace the ions along those modes; the Raman intensity would be propotional to the change in polarisibility
- Perform molecular dynamics and every now and then evaluate the polarisability; the Raman intensity is related to its autocorrelation function

Nature of the chemical shielding

- External magnetic field $B^{\text {ext }}$
- Electronic reaction: induced current j (r)
\Rightarrow inhomogeneous magnetic field $\mathrm{B}^{\text {ind }}(\mathrm{r})$
- Nuclear $\operatorname{spin} \boldsymbol{\mu}$ Up/Down energy level splitting

Chemical shifts - chemical bonding

- NMR shielding tensor σ : definition through induced field

$$
\begin{aligned}
\mathbf{B}^{\mathrm{tot}}(\mathbf{R}) & =\mathbf{B}^{\text {ext }}+\mathbf{B}^{\text {ind }}(\mathbf{R}) \\
\sigma(\mathbf{R}) & =-\frac{\partial \mathbf{B}^{\text {ind }}(\mathbf{R})}{\partial \mathbf{B}^{\text {ext }}} \ll 1
\end{aligned}
$$

- Strong effect of chemical bonding Hydrogen atoms: H-bonds
\Rightarrow NMR spectroscopy:
Unique characterization
of local microscopic structure

(liquid water)

Chemical shielding tensor

$$
\sigma(R)=-\left(\begin{array}{ccc}
\frac{\partial B_{x}^{\text {ind }}(R)}{\partial B_{x}^{\text {ext }}} & \frac{\partial B_{x}^{\text {ind }}(R)}{\partial B_{y}^{\text {ext }}} & \frac{\partial B_{x}^{\text {ind }}(R)}{\partial B_{z}^{\text {ext }}} \\
\frac{\partial B_{y}^{\text {ind }}(R)}{\partial B_{x}^{\text {ext }}} & \frac{\partial B_{y}^{\text {ind }}(R)}{\partial B_{y}^{\text {ext }}} & \frac{\partial B_{y}^{\text {ind }}(R)}{\partial B_{z}^{\text {ext }}} \\
\frac{\partial B_{z}^{\text {ind }}(R)}{\partial B_{x}^{\text {ext }}} & \frac{\partial B_{z}^{\text {ind }}(R)}{\partial B_{y}^{\text {ext }}} & \frac{\partial B_{z}^{\text {ind }}(R)}{\partial B_{z}^{\text {ext }}}
\end{array}\right)
$$

- Tensor is not symmetric
\Rightarrow symmetrization \Rightarrow diagonalization \Rightarrow Eigenvalues
- Isotropic shielding: $\operatorname{Tr} \sigma(R)$
- Isotropic chemical shift: $\delta(R)=\operatorname{Tr} \sigma^{\mathrm{TMS}}-\operatorname{Tr} \sigma(R)$

Magnetic field perturbation

- Magnetic field perturbation: vector potential A

$$
\begin{aligned}
\mathbf{A} & =-\frac{1}{2}\left(\mathbf{r}-\mathbf{R}_{\mathrm{g}}\right) \times \mathbf{B} \\
\hat{\mathcal{H}}^{\text {pert }} & =-\frac{e}{m} \hat{\mathbf{p}} \cdot \hat{\mathbf{A}} \\
& =i \frac{\hbar e}{2 m} \mathbf{B} \cdot\left(\hat{\mathrm{r}}-\mathbf{R}_{\mathrm{g}}\right) \times \hat{\nabla}
\end{aligned}
$$

- Cyclic variable: gauge origin R_{g}
- Perturbation Hamiltonian purely imaginary $\Longrightarrow \quad n^{\lambda}=0$

Magnetic field perturbation

Resulting electronic current density:

$$
\begin{aligned}
\hat{\mathbf{j}}_{\mathbf{r}^{\prime}} & =\frac{e}{2 m}\left[\hat{\pi}\left|\mathbf{r}^{\prime}\right\rangle\left\langle\mathbf{r}^{\prime}\right|+\left|\mathbf{r}^{\prime}\right\rangle\left\langle\mathbf{r}^{\prime}\right| \hat{\pi}\right] \\
& =\frac{e}{2 m}\left[(\hat{\mathbf{p}}-e \hat{\mathbf{A}})\left|\mathbf{r}^{\prime}\right\rangle\left\langle\mathbf{r}^{\prime}\right|+\left|\mathbf{r}^{\prime}\right\rangle\left\langle\mathbf{r}^{\prime}\right|(\hat{\mathbf{p}}-e \hat{\mathbf{A}})\right] \\
\mathbf{j}\left(\mathbf{r}^{\prime}\right) & =\sum_{k}\left\langle\varphi_{k}^{(0)}\right| \hat{\mathbf{j}}_{\mathbf{r}^{\prime}}^{(2)}\left|\varphi_{k}^{(0)}\right\rangle+2\left\langle\varphi_{k}^{(0)}\right| \hat{\mathbf{j}}_{\mathbf{r}^{\prime}}^{(1)}\left|\varphi_{k}^{(1)}\right\rangle \\
& =\mathbf{j}^{\text {dia }}\left(\mathbf{r}^{\prime}\right)+\mathbf{j}^{\text {para }}\left(\mathbf{r}^{\prime}\right)
\end{aligned}
$$

Dia- and paramagnetic contributions:
zero and first order wavefunctions

The Gauge origin problem

- Gauge origin \mathbf{R}_{g} theoretically not relevant
- In practice: very important: $\mathrm{j}^{\mathrm{dia}}\left(\mathrm{r}^{\prime}\right) \propto \mathbf{R}_{g}^{2}$
- GIAO: Gauge Including Atomic Orbitals
- IGLO: Individual Gauges for Localised Orbitals
- CSGT: Continuous Set of Gauge Transformations: $\mathbf{R g}_{\mathrm{g}}=\mathbf{r}^{\prime}$
- IGAIM: Individual Gauges for Atoms In Molecules

Magnetic field under periodic boundary conditions

- Basis set: plane waves
(approach from condensed matter physics)
- Single unit cell (window) taken as a representative for the full crystal
- All quantities defined in reciprocal space (periodic operators)
- Position operator $\hat{\mathrm{r}}$ not periodic
- non-periodic perturbation Hamiltonian $\hat{\mathcal{H}}^{\text {pert }}$

PBC: Individual \widehat{r}-operators for localized orbitals

- Localised Wannier orbitals φ_{i} via unitary rotation:

$$
\varphi_{i}=U_{i j} \psi_{j}
$$

orbital centers of charge d_{i}

- Idea:

Individual position operators

Magnetic fields in electronic structure

- Variational principle \mapsto electronic response orbitals
- Perturbation Hamiltonian $\hat{\mathcal{H}}^{\text {pert }}: \widehat{\mathbf{A}}=-\frac{1}{2}\left(\widehat{\mathbf{r}}-\mathbf{R}_{\mathrm{g}}\right) \times \mathbf{B}$
- Response orbitals \mapsto electronic ring currents
- Ring currents \mapsto NMR chemical shielding
- Reference to standard \mapsto NMR chemical shift

Isolated molecules

- Isolated organic molecules, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts
- Comparison with Gaussian 98 calculation, (converged basis set DFT/BLYP)

Supercritical water: gas - liquid shift

- Qualitatively reduced hydrogen bond network in supercritical water
- Excellent agreement with experiment
- Slight overestimation of H-bond strength at T^{\ominus} BLYP overbinding ? Insufficient relaxation ?

Properties: Summary

- CPMD provides many post-processing methods

