Properties




MD simulation: output

e Trajectory of atoms
— positions: e. g. diffusion, mass transport

— velocities: e. g. v-v—autocorrelation spectrum

e Energies
— temperature
— displacement

— fluctuations



Mean square displacement, diffusion

e mean square displacement

msd(t) = (AR(t)?) = <[R(t) - R(O)]2>

e diffusion coefficient (Einstein relation)

D= i lim (AR(t)?)

t—o00

alternative definition (Green-Kubo formula)

D = /tzo (v (t) vy (0)) dt



Vibrational spectrum

e \elocity-velocity autocorrelation

Cy (t) = /t h (vg () vy (0)) dt

=0

e Its cosine transform gives the vibrational, or power spectrum

I (w) = /th (t) e“t dt



Vibrational (harmonic) frequencies

e [ he vibrational frequencies can be evaluated either using the finite differences
(VIBRATIONAL ANALYSIS in CPMD) or perturbation theory (see e. g. the
work of Stefano Baroni for calculating phonon frequencies in solids)

e Always remember to relax the ionic structure first; the more better the
convergence, the more accurate will your frequencies be, especially the lowest
ones



Electronic density of states

n(FE) is the number of electrons in the energy range E...E + 6E

Can be evaluated via

in practise § functions have to be broadened e. g. with Gaussian functions

in CPMD: E;x can be obtained with KOHN-SHAM ENERGIES



Kohn-Sham states

e Although not necessarily physical, it is often useful to plot them

e In CPMD: %;x can be obtained with KOHN-SHAM ENERGIES followed with
a run employing either CUBEFILE ORBITALS of RHOOUT BANDS



Energy level diagram

e Example: Water molecule
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Local density of states

e Project the Kohn-Sham orbitals on the localised (pseudo) wave functions
around the central atom

e Yields information about the energetic location of the orbitals and molecular
hybrids formed by the atom

e Example: Hydroxyl on Pt(111) surface
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Atoms In Molecules, AIM

Bader's zero flux surface
e Surface partitioning the charge to different atoms

e Based on the “zero flux’, i. e. finding locations where Vn -u = 0, where u is
the normal (unit) vector of the surface



Conductivity

Optical conductivity

e T he optical conductivity according to the Kubo-Greenwood formula

o (w) = QZ;CQ.._Z(J‘% 1) [ 1Bl )| 8 (25 — £ — Tw)

3m




Electron localisation function

e Derived from Taylor expansion of the conditional probability of finding a
second electron with the same spin close to a reference electron

e Normalised to the uniform electron gas

ELF = 1
1+(Do/DY)?

_ 1 (V’no)Q . 2 o_ 3 2\2/3 5/3
Dg—Tg—Zn—a TU—EZ:|V¢Z‘ Do.—g(67r ) no.
e ELF is limited to OK< ELF <1

— ELF = 1: Perfect localisation

— ELF = 1/2: Uniform electron gas



Modern theory of polarisation
Recently large interest was paid to polarisation in crystals
Problem: periodicity makes use of position operator r impossible in solids
Solution: Berry phases

Yielded as ‘“side products’ e.g. Wannier centres, Wannier orbitals



Position operator in periodic systems

Wave functions are periodic
Y (r) =v¢(r+L)
Result of operator acting on wave function has also to be periodic
Oy (r) =¢(r) =¢(r+L)
Result of operator acting on wave function has also to be periodic

rf (r) = (r+ L)y (r+ L)
The expectation value of the position operator of a wave function using PBC

(R) = 25% In (@ [e/@T/DX ] )

7

(X) is defined only modulo L



Polarisation in periodic systems

Total polarisation
Ptot:Pnuc+Pel

Electronic contribution (IM-only)

2e
Py = — SIndet S,
S TN

Son = <¢m ‘e_iGara

én)

infrared adsorption coefficient

4rwtanh(Bhw/2) [

3hn (w) c2 — <P (t)-P (0)> Wt gt

a(w) =

n (w) = refractive index, ¢ = speed of light, 2 = volume



Wannier orbitals

Kohn-Sham energy is invariant upon a unitary rotation of the occupied
orbitals

Use this to define localised orbitals by minimising the spread 2

2=23 ((0:]°|0) ~ (6111 6)°)

Leads to spread

Q; = (2n )2 Zwl(1—|zaz|)

where w; are weights depending on ceII symmetry and
Zai = /exp (iGa - 1) |0 (r)|2 dr
r

Centre of orbital

Using the minimisation of €2 one obtains “maximally localised orbitals”



Wannier centres, orbitals

Example: Water

e Dipole moment of water molecules in different environments

doo (A) don (A) p (D)

Monomer
Dimer
Liquid

2.94
2.78

0.97
0.98
0.99

1.87
2.15
2.95

probability distribution

dipole moment (D)




Raman spectrum

With CPMD Raman spectrum can be evaluated in two ways:

e Harmonic analyasis: Calculate the vibrational normal modes
(VIBRATIONAL ANALYSIS) and displace the ions along those modes; the
Raman intensity would be propotional to the change in polarisibility

e Perform molecular dynamics and every now and then evaluate the
polarisability; the Raman intensity is related to its autocorrelation function
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Nature of the chemical shielding

External magnetic field B

Electronic reaction: induced current j(r)
inhomogeneous magnetic field B (r)
Nuclear spin u Up/Down

energy level splitting

B=0

{ BB, |fw

B ext

rind




Chemical shifts — chemical bonding

e NMR shielding tensor o:
definition through induced field

Btot(R) — Bext _|_ Bind(R)
8Bind R
c(R) = - 8Be§<t ) < 1

e Strong effect of chemical bonding
Hydrogen atoms: H-bonds

= NMR spectroscopy:
Unique characterization
of local microscopic structure

(liquid water)



Chemical shielding tensor

( OBINd(R)  &BINY(R) 8B'”d(R)\

o ngt P ngt Bext
(R) = oBM(R)  9BM(R)  9BINM(R)
o - o Bext angt dBext
oBINM(R)  oBINM(R)  9BIN(R)
\ o Bext P ngt P ngt )

e [ensor is not symmetric
= symmetrization = diagonalization = Eigenvalues

e Isotropic shielding: Tr o(R)

e Isotropic chemical shift: 6(R) = Tro ™S — Tro(R)



Magnetic field perturbation

e Magnetic field perturbation: vector potential A

1
A = —E(r—Rg)XB
pert  — —if)-A
m
h .
= i “B.(f-Ry)xV
2m

e Cyclic variable: gauge origin Ry

e Perturbation Hamiltonian purely imaginary =— n* =0



Magnetic field perturbation

Resulting electronic current density:
o= ﬁ[ﬂr’)(rﬂ-l—\r’)(r’\fr}
= S| A (| + ) |(p — eA)]
i) = Y (@21 100 + 2 (0] 5 o)
= jdk‘a(r’) + P (x")

Dia- and paramagnetic contributions:
zero and first order wavefunctions



The Gauge origin problem

Gauge origin Ry theoretically not relevant

In practice: very important: j¥?(r") < R2

GIAO: Gauge Including Atomic Orbitals

IGLO: Individual Gauges for Localised Orbitals

CSGT: Continuous Set of Gauge Transformations: Ry =1’

IGAIM: Individual Gauges for Atoms In Molecules



Magnetic field under periodic boundary
conditions

Basis set: plane waves
(approach from condensed matter physics)

Single unit cell (window)
taken as a representative for the full crystal

All quantities defined in reciprocal space (periodic operators)
Position operator r not periodic

non-periodic perturbation Hamiltonian FPe't



PBC: Individual r-operators for localized
orbitals

e L ocalised Wannier orbitals ¢; via unitary rotation:
pi = U
orbital centers of charge d;

o Idea: )

b (x)

Individual position
operators P T (%)




Magnetic fields in electronic structure
Variational principle — electronic response orbitals
Perturbation Hamiltonian AP A = —1 (f —Ry) x B
Response orbitals — electronic ring currents
Ring currents — NMR chemical shielding

Reference to standard — NMR chemical shift



Isolated molecules

e Isolated organic molecules, 'H and 13C chemical shifts

e Comparison with Gaussian 98 calculation,
(converged basis set DFT/BLYP)
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Supercritical water: gas — liquid shift

e Qualitatively reduced hy-
drogen bond network in su-
percritical water

e EXxcellent agreement with
experiment

e Slight overestimation of
H-bond strength at T°
BLYP overbinding 7
Insufficient relaxation 7

— confirmation of simulation
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Properties: Summary

e CPMD provides many post-processing methods



