
Properties



MD simulation: output

• Trajectory of atoms

– positions: e. g. diffusion, mass transport

– velocities: e. g. v-v–autocorrelation spectrum

• Energies

– temperature

– displacement

– fluctuations



Mean square displacement, diffusion

• mean square displacement

msd(t) =
〈
∆R(t)2

〉
=

〈
[R(t)−R(0)]2

〉
• diffusion coefficient (Einstein relation)

D =
1

2d
lim
t→∞

〈
∆R(t)2

〉
alternative definition (Green-Kubo formula)

D =

∫ ∞

t=0
〈vx (t) vx (0)〉 dt



Vibrational spectrum

• Velocity-velocity autocorrelation

Cv (t) =

∫ ∞

t=0
〈vx (t) vx (0)〉 dt

• Its cosine transform gives the vibrational, or power spectrum

I (ω) =

∫
t

Cv (t) e
iωt dt



Vibrational (harmonic) frequencies

• The vibrational frequencies can be evaluated either using the finite differences
(VIBRATIONAL ANALYSIS in CPMD) or perturbation theory (see e. g. the
work of Stefano Baroni for calculating phonon frequencies in solids)

• Always remember to relax the ionic structure first; the more better the
convergence, the more accurate will your frequencies be, especially the lowest
ones



Electronic density of states

• n(E) is the number of electrons in the energy range E . . . E + δE

• Can be evaluated via

n (E) =
∑
i,k

δ
(
E − εi,k

)
• in practise δ functions have to be broadened e. g. with Gaussian functions

• in CPMD: Ei,k can be obtained with KOHN-SHAM ENERGIES



Kohn-Sham states

• Although not necessarily physical, it is often useful to plot them

• In CPMD: ψi,k can be obtained with KOHN-SHAM ENERGIES followed with
a run employing either CUBEFILE ORBITALS of RHOOUT BANDS



Energy level diagram

• Example: Water molecule



Local density of states

• Project the Kohn-Sham orbitals on the localised (pseudo) wave functions
around the central atom

• Yields information about the energetic location of the orbitals and molecular
hybrids formed by the atom

• Example: Hydroxyl on Pt(111) surface





Atoms In Molecules, AIM
Bader’s zero flux surface

• Surface partitioning the charge to different atoms

• Based on the “zero flux”, i. e. finding locations where ∇n · u = 0, where u is
the normal (unit) vector of the surface



Conductivity
Optical conductivity

• The optical conductivity according to the Kubo-Greenwood formula

σ (ω) =
2πe2

3m2Vcell

1

ω

∑
i,j

(
fi − fj

) ∣∣∣〈ψi |p̂|ψj〉∣∣∣2 δ (
εi − εj − h̄ω

)



Electron localisation function

• Derived from Taylor expansion of the conditional probability of finding a
second electron with the same spin close to a reference electron

• Normalised to the uniform electron gas

ELF = 1
1+(Dσ/D0

σ)
2

Dσ = τσ −
1

4

(∇nσ)2

nσ
τσ =

∑
i

|∇ψi|2 D0
σ =

3

5

(
6π2

)2/3
n5/3
σ

• ELF is limited to 0 ≤ ELF ≤ 1

– ELF = 1: Perfect localisation

– ELF = 1/2: Uniform electron gas



Modern theory of polarisation

• Recently large interest was paid to polarisation in crystals

• Problem: periodicity makes use of position operator r̂ impossible in solids

• Solution: Berry phases

• Yielded as “side products” e. g. Wannier centres, Wannier orbitals



Position operator in periodic systems

• Wave functions are periodic

ψ (r) = ψ (r + L)

• Result of operator acting on wave function has also to be periodic

Oψ (r) = φ (r) = φ (r + L)

• Result of operator acting on wave function has also to be periodic

rψ (r) = (r + L)ψ (r + L)

• The expectation value of the position operator of a wave function using PBC〈
X̂

〉
=

L

2π
= ln

〈
ψ

∣∣∣ei(2π/L)X̂
∣∣∣ψ〉

〈
X̂

〉
is defined only modulo L



Polarisation in periodic systems

• Total polarisation

Ptot = Pnuc + Pel

• Electronic contribution (Γ-only)

Pα
el = −

2e

2π |Gα|
= ln detSα ,

Sαmn =
〈
φm

∣∣e−iGαrα
∣∣φn〉

• infrared adsorption coefficient

α (ω) =
4πω tanh(β h̄ω/2)

3 h̄n (ω) cΩ

∫ ∞

t=−∞
〈P (t) ·P (0)〉 eiωt dt

• n (ω) = refractive index, c = speed of light, Ω = volume



Wannier orbitals

• Kohn-Sham energy is invariant upon a unitary rotation of the occupied
orbitals

• Use this to define localised orbitals by minimising the spread Ω

Ω = 2
∑
i

(〈
φi

∣∣r2
∣∣φi〉− 〈φi |r|φi〉2)

• Leads to spread

Ωi =
2

(2π)2

6∑
I=1

ωI (1− |zα,i|)

where ωI are weights depending on cell symmetry and

zα,i =

∫
r

exp (iGα · r) |φi (r)|2 dr

• Centre of orbital

rα,i = −
∑
β

hαβ
2π

= ln zα,i

• Using the minimisation of Ω one obtains “maximally localised orbitals”



Wannier centres, orbitals
Example: Water

• Dipole moment of water molecules in different environments

dOO (Å) dOH (Å) µ (D)
Monomer 0.97 1.87

Dimer 2.94 0.98 2.15
Liquid 2.78 0.99 2.95



Raman spectrum
With CPMD Raman spectrum can be evaluated in two ways:

• Harmonic analyasis: Calculate the vibrational normal modes
(VIBRATIONAL ANALYSIS) and displace the ions along those modes; the
Raman intensity would be propotional to the change in polarisibility

• Perform molecular dynamics and every now and then evaluate the
polarisability; the Raman intensity is related to its autocorrelation function



Nature of the chemical shielding

• External magnetic field Bext

• Electronic reaction: induced current j (r)
⇒ inhomogeneous magnetic field Bind(r)
• Nuclear spin µµµ Up/Down

energy level splitting

Β=0
Β=Β0 h̄ω

∆E = 2µµµ ·B = h̄ω

Bext

Bind

jind



Chemical shifts – chemical bonding

• NMR shielding tensor σ:
definition through induced field

Btot(R) = Bext + Bind(R)

σ(R) = −
∂Bind(R)

∂Bext
� 1

• Strong effect of chemical bonding
Hydrogen atoms: H-bonds

⇒ NMR spectroscopy:
Unique characterization
of local microscopic structure

(liquid water)



Chemical shielding tensor

σ(R) = −



∂Bind
x (R)
∂Bext

x

∂Bind
x (R)
∂Bext

y

∂Bind
x (R)
∂Bext

z

∂Bind
y (R)

∂Bext
x

∂Bind
y (R)

∂Bext
y

∂Bind
y (R)

∂Bext
z

∂Bind
z (R)
∂Bext

x

∂Bind
z (R)
∂Bext

y

∂Bind
z (R)
∂Bext

z



• Tensor is not symmetric
⇒ symmetrization ⇒ diagonalization ⇒ Eigenvalues

• Isotropic shielding: Tr σ(R)

• Isotropic chemical shift: δ(R) = TrσTMS −Trσ(R)



Magnetic field perturbation

• Magnetic field perturbation: vector potential A

A = −
1

2
(r−Rg)×B

Ĥpert = −
e

m
p̂ · Â

= i
h̄e

2m
B · (̂r−Rg)× ∇̂

• Cyclic variable: gauge origin Rg

• Perturbation Hamiltonian purely imaginary =⇒ nλ = 0



Magnetic field perturbation
Resulting electronic current density:

ĵr′ =
e

2m

[
π̂|r′〉〈r′|+ |r′〉〈r′|π̂

]
=

e

2m

[
(p̂− eÂ)|r′〉〈r′|+ |r′〉〈r′|(p̂− eÂ)

]
j(r′) =

∑
k

〈ϕ(0)
k | ĵ(2)

r′ |ϕ(0)
k 〉+ 2 〈ϕ(0)

k | ĵ(1)
r′ |ϕ(1)

k 〉

= jdia(r′) + jpara(r′)

Dia- and paramagnetic contributions:
zero and first order wavefunctions



The Gauge origin problem

• Gauge origin Rg theoretically not relevant

• In practice: very important: jdia(r′) ∝ R2
g

• GIAO: Gauge Including Atomic Orbitals

• IGLO: Individual Gauges for Localised Orbitals

• CSGT: Continuous Set of Gauge Transformations: Rg = r′

• IGAIM: Individual Gauges for Atoms In Molecules



Magnetic field under periodic boundary
conditions

• Basis set: plane waves
(approach from condensed matter physics)

• Single unit cell (window)
taken as a representative for the full crystal

• All quantities defined in reciprocal space (periodic operators)

• Position operator r̂ not periodic

• non-periodic perturbation Hamiltonian Ĥpert



PBC: Individual r̂-operators for localized
orbitals

• Localised Wannier orbitals ϕi via unitary rotation:

ϕi = Uij ψj

orbital centers of charge di

• Idea:

Individual position
operators

a(x)

^
a

r̂  (x)b

b
(x)

(x)

ϕ

r  (x)

ϕ

L0 2Ld db a



Magnetic fields in electronic structure

• Variational principle 7→ electronic response orbitals

• Perturbation Hamiltonian Ĥpert: Â = −1
2
(̂r−Rg)×B

• Response orbitals 7→ electronic ring currents

• Ring currents 7→ NMR chemical shielding

• Reference to standard 7→ NMR chemical shift



Isolated molecules

• Isolated organic molecules, 1H and 13C chemical shifts

• Comparison with Gaussian 98 calculation,
(converged basis set DFT/BLYP)
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Supercritical water: gas – liquid shift

• Qualitatively reduced hy-
drogen bond network in su-
percritical water

• Excellent agreement with
experiment

• Slight overestimation of
H-bond strength at T◦−

BLYP overbinding ?
Insufficient relaxation ?
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=⇒ confirmation of simulation



Properties: Summary

• CPMD provides many post-processing methods


