
Molecular dynamics



Molecular dynamics
Why?

• allows realistic simulation of equilibrium and transport properties in Nature

• ensemble averages can be used for statistical mechanics

• time evolution of chemical reactions, phase transitions, . . . can be followed

• search for reaction paths, exploration of phase space



Molecular dynamics
What?

• propagation of Newton’s equation of motion (with discrete equations of
motion)

FI = MIa = MIR̈I

• alternative derivation from the Lagrange formalism:
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U is the interaction potential between the particles. The Euler-Lagrange
equation

d

dt

∂L
∂ṘI
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∂L
∂RI

• most common algorithm: Verlet algorithm (in a few variations)



Verlet algorithm
Velocity Verlet

• discretisation of Newton’s equation of motion

MIR̈I = FI

i) Propagate ionic positions RI(t) according to

RI(t + ∆t) = RI(t) + ∆t vI(t) +
(∆t)2

2MI
FI(t)

ii) Evaluate forces FI(t + ∆t) at RI(t + ∆t)

iii) Update velocities

vI(t + ∆t) = vI(t) +
∆t

2MI
[FI(t) + FI(t + ∆t)]



Velocity Verlet
Derivation

• Taylor expansion for ionic positions RI(t)

RI(t + ∆t) = RI(t) + ∆t ṘI(t) +
(∆t)2

2
R̈I(t) + . . .

= RI(t) + ∆t vI(t) +
(∆t)2

2MI
FI(t) + . . .

• Backward Taylor expansion for ionic positions RI(t)

RI(t + ∆t) = RI(t)−∆t vI(t + ∆t) +
(∆t)2

2MI
FI(t + ∆t) + . . .

• Add up:

RI(t+∆t)+RI(t) = RI(t+∆t)+RI(t)+∆t [vI(t)− vI(t + ∆t)]+
(∆t)2

2MI
[FI(t) + FI(t + ∆t)]

• Yields velocities

vI(t + ∆t) = vI(t) +
∆t

2MI
[FI(t) + FI(t + ∆t)]



Velocity Verlet
Advantages

Other algorithms provides can have better short time stability and allow larger
time steps, but . . .

• simple and efficient; needs only forces, no higher energy derivatives

• still correct up to and including third order, (∆t)3

• explicitly time reversible

• sympletic: conserves volume in phase space

• superior long time stability (energy conservation) of the Verlet algorithm



Velocity Verlet
Choice of time step

• The time step is in general chosen as large as possible . . .

• “possible” = stable dynamics = energy conserved; or, drift in energy
acceptable

• rule of thumb: 6-10 times smaller than the fastest period in the system;
otherwise sampling of that mode is impossible

• time step can be changed during simulation(!)



Velocity Verlet: Choice of time step
AlCl3 dimer

Example of a good/bad choice of time step

• Highest vibrational frequency 595 cm−1 ⇒ period T = 56 fs

• Divergence between δt = 400..500 atu = 9.6-12.0 fs ≈ 1/5 T



Equations of motion: Alternative derivation
Propagation methods

• Define phase space vector Γ = (x, p) and commutator

{A, H} =
∂A

∂x

∂H

∂p
−

∂A

∂p

∂H

∂x

• Hamilton’s equations of motion:

dΓ

dt
= {Γ, H}

• Define L̂ so that

iL̂Γ = {Γ, H}

• Γ̇ = iL̂Γ ⇒
Γ(t) = eiL̂tΓ(0)

• Such formalism has been used by Mark Tuckerman et al to derive new
integrators



Ensembles

• micro-canonical ensemble NVE

• canonical ensemble NVT

• isothermal-isobaric NPT

• grand-canonical µVT

• isobaric-isoenthalpic NPH

• non-equilibrium



Temperature in MD

• In canonical (NVT) ensemble(
N∑

I=1
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• Maxwell-Boltzmann distribution of velocities (α = x, y, z)
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)
• Introduce instantaneous temperature

T
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)
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• T fluctuates in time (in finite systems), the average gives the temperature of
microcanonical system

TN =
1

M

M∑
m=1

T (tm)



Ways to control temperature
One might want a constant temperature or a heating/cooling of the sample

• Rescaling of velocities

– frequently scale the velocity by the ratio between the wanted and the
instantaneous (or recent) temperature

– does not lead to energy conservation or physical trajectories

– very good in initial stages of equilibrating the system (e. g. after assigning
random positions to the particles)

• Simulated annealing/heating

– Scale atomic velocities at each time step; easy when using velocity Verlet

• Thermostats (“heat bath”)

– Andersen thermostat

– Nosé-Hoover thermostat/thermostat chains



Nosé-Hoover thermostat
Attach a “reservoir” to the system which is able to adsorb and depose heat

R̈I =
FI

M I
− ζṘI ,

ζ̇ =
1

Q

[
N∑

I=1

MIṘ
2
I − 3NkbT

]
• If . . .

– T > kBT : Increase of ζ̇, (eventually) larger friction

– T < kBT : Decrease of ζ̇, (eventually) smaller friction

• Q is an effective mass (inertia) for the friction

– determines the response time of the thermostat to deviations of the
actual temperature from the target T

– couples to the frequencies of the system; usually selected as a
characteristic frequency ωn in the spectrum

• new constant of motion:

ENVT
conserved = Ek,I

({
ṘI

})
+ Epot ({R}) +

Q

2
ζ2 + 3NkBT

∫
t

ζ dt

even though the dynamics is non-Hamiltonian



Nosé-Hoover thermostat chains

• standard Nosé-Hoover thermostat:

– does not always yield ergodic dynamics – e. g. harmonic oscillator

– slow response time

• Nosé-Hoover thermostat chains: Thermostatting the thermostat(s)

MIR̈I = FI −MI ξ̇ṘI
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• new energy, but is still conserved:
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Nosé-Hoover thermostat chains
Observations

• ergodicity problem e. g. in harmonic oscillator solved

• much more efficient in imposing the target temperature

• trajectories differ from the physical ones, so does the conserved energy, but
thermal averages are fine



Other ensembles

• Constant pressure

– Parrinello-Rahman dynamics for the cell axis

∗ Similar to Nosé-Hoover thermostat; barostat

• Constant number of particles



Tricks

• Simulated annealing

• Multiple time scales / RESPA

• Periodic boundary conditions

• Ewald summation

• Thermodynamic integration

• Cell lists etc



Reactions, rare events



Constraints
One might want a constraint. . .

• as a reaction coordinate

• to prevent a reaction/change in system

• to increase time step (e. g. —CH3 group)

Example: a fixed inter-atomic distance:

σ1 (RI,RJ) = (|RI −RJ | − dIJ)
2



Constraints
Lagrangean formulation

• Lagrangean (multipliers λ):

L′ = L −
∑

α

λασα

(
RN
)

• Equation of motion:

∂

∂t

∂L′

∂PI
=

∂L′

∂RI

MIR̈I = −
∂E

∂RI
−
∑

α
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∂σα
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= FI +
∑
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• λα (in principle) solved by requiring

∂σ̇α

∂t
=

∂Ṗ · ∇σα

∂t

• SHAKE/RATTLE algorithm: Constraints solved iteratively, one by one



Restraints

• Similar to constraints, but harmonic and allows for deviations

• For example distance, Erestraint = kr (|RI −RJ | − d0)
2, d0 = target distance, kr

= force constant of restraint

• Can be either attractive (kr > 0) or repulsive (kr < 0; e. g. in angles)

• Does not in general allow a reduction of the time step (rather would increase
it), but can be used e. g. to hold atoms in a molecule together

• Note: Energy no longer conserved



Constraint types

• Distance: |RI −RJ | − d0, d0 = target distance

• Distance: (|RI −RJ | − d0)
2, d0 = target distance

• Angle: θ (RI,RJ ,RK)

• Dihedral angle: Θ(RI,RJ ,RK,RL)

• Distance difference: |RI −RJ | − |RJ −RK|

• Rigid sub-structure: {RI,J,K,...}

• Coordination number: RI, {RJ,K,...}



Coordination number

• Coordination number

nI

(
RN
)
=
∑
J 6=I

S (|RI −RJ |)

• Convolution

S (r) =
1

exp [κ (r − rc)] + 1

• κ−1 = width of transition region, rc = coordination radius

• force

gI = −λ
∂nI

∂RI
=

1

2

λκ

cosh [κ (r − rc)] + 1

RJI

RJI

acts only within the vicinity of rc



Coordination number

S (r) =
1

exp [κ (r − rc)] + 1
gI =

1

2

λκ

cosh [κ (r − rc)] + 1

RJI

RJI



Rare event: Barrier crossing
“To B or not to B”

• It takes a very long time to cross high barriers if the height is much larger
than kBT

c© M Parrinello



Rare events

• MD is a real time method, with a time step of the order of 0.1–1 fs

• however, in Nature many effects occur at time scales much longer than the
realistic times (e. g. in biology seconds)

• due to high energy barriers or inprobable location in phase space (in Arrhenius
rate of reaction low prefactor)

• Ways to direct reactions:

– high temperature

– constraints

– bias potentials

– metadynamics



Free energy differences
Thermodynamics integration

• reaction coordinate ζ

• probabilistic interpretation of free energy

W
(
ζ ′
)
= −kT lnPζ

(
ζ ′
)

Pζ

(
ζ ′
)
=
〈
δ
[
ζ
(
RN
)
− ζ ′

]〉
• Free energy difference

W (ζ2)−W (ζ1) =

∫ ζ2

ζ=ζ1

〈
∂H
∂ζ

〉conditional

ζ ′
dζ



Blue moon ensemble
Reaction rates

Principle:

• Run constrained dynamics (reaction coordinate ζ) from the reactants (ζA) to
the transition state (ζ‡) ⇒ “equilibrium part of rate constant”

• Normal (unconstrained) MD from the constrained MD configuration at the
transition state ζ‡ ⇒ “dynamic” part of the rate constant”: Will land on A or B

• Total rate constant: Product of those two



Blue moon ensemble
Example: SN2 reaction F−+CH3Cl → CH3F + Cl−

Mugnai, Cardini & Schettino, JCP 2003

• Left: (Free) energy profile along the reaction paths at 0 and 300 K

• Right: Dipole moment CH3X and Y− along the 0 K reaction path



But:



Rare events
Complicated energy surfaces

c© M Parrinello

• What happenes if a single reaction coordinate is not enough?

• The low-energy path might not be captured



Rare events

c© D Chandler

• ... or what if the potential energy landscape is very rugged?



Transition path sampling
Or: Throwing ropes over rough mountains passes, in the dark

• Transition path sampling, idea:

– Start with an initial reaction path

– At a point along the present path start MD with velocities ṘI and −ṘI; if
they lead to different end states, the state is probably close to a transition
state

– This way new reaction paths can be found, with a lower reaction barrier:
Starting from a point “p” we might find another path with a lower barrier



• Reaction rates can be obtained, but with a large amount of statistics
(different MD runs)



Transition path sampling
Example: 7-atom Lennard-Jones clusters

David Chandler & co-workers

• Move the central (red) atom to the boundary; the central atom in the final
state random (blue)

• Difficult, correlated “reaction” mechanism



Transition path sampling
Example: Hydrogenated water trimer

• Reaction path found using transition path sampling (left) and the (a)
high-energy and (b) low-energy saddle point

(a) (b)



Metadynamics

Alessandro Laio & Michele Parrinello, PNAS (2002)

• A method to “drive” chemical reactions using collective variables

• Add a small, repulsive potential at the present value of the reaction
coordinate

• Free energy surface can be reconstructed after the simulation



Metadynamics
Algorithm

• Choose a se of collective variables, e. g. distances, coordination number,
simulation cell parametres, . . .

– si = si

(
{RI}subset

)
• Constraint these collective variables at a given point in s

– L = T − V +
∑

i λi

∣∣si

(
{RI}subset

)
− st

i

∣∣
• Perform “metadynamics” in space of collective coordinates. . .

– either in steps: “coarse grained dynamics”

– continuously: “smooth metadynamics”



Metadynamics

• History-dependent potential

V (t, s) =

t∫
t′=0

∣∣ṡ (t′)∣∣W (
t′
)
exp

{
−[s− s (t′)]2

2 (∆s⊥)2 δ

(
ṡ (t′)

|ṡ (t′)|
·
[
s− s

(
t′
)])}

dt′



Metadynamics
Evolution of V (t, s)



Metadynamics
Evolution of V (t, s)



Metadynamics
Evolution of V (t, s)



Metadynamics
Evolution of V (t, s)



Metadynamics
Evolution of V (t, s)



Metadynamics
Evolution of V (t, s)



Metadynamics
Evolution of V (t, s)



Metadynamics
Evolution of V (t, s)



Metadynamics
Free energy surface

• The free energy surface can be reconstructed afterwards!

• F (s) = −kBT lnP ((s)), P ((s)) = 1
Q

∫
s′
exp [−E (s) /(kBT )] δ (s− s′) ds′

• Slowly all the local minima are filled and

lim
t→∞

V (t, s) + F (s) = constant



Metadynamics: Applications so far
Rapidly expanding

System (collective variables):

• Solid state phase transitions (cell parametres): graphite to diamond under
pressure; silicon; benzene; Li-ABW zeolite (Li [AlSiO4] ·H2O); melting of ice

• Chemical reactions

– SN2 reaction Cl−+CH3Cl → CH3Cl + Cl− (distances)

– carbonylation of epoxide (ethylenoxide) to β-lactone, [CH2]2 O (EtO) +
CO2 → C3H4O2 (coordination number)

– azulene-to-naphthalene (C10H8) rearrangement (coordination number)

– isomerisation and dissociation of silicon clusters Si6Hn, n = 4,6,8
(distances)

– dethreading of cyclophane (distances, coordination number)

All by Michele Parrinello & co-workers



Metadynamics: Applications continue
Dethreading of cyclophane

Tetracationic cyclophane (cyclobis-(paraquat-p-phenylene)8
4+),

1,5-dihydroxynaphthalene, solvated in acetonitrile (distances, coordination
number)

All by Michele Parrinello & co-workers



Metadynamics
Summary

Advantages:

• General

• Can cope with high dimensionality

• Predictive, wide exploration of free energy surface (with lower resolution)

Disadvantages:

• Careful choice of the collective variables

• Inaccurate if a “slow” variable is forgotten (can be checked a posteriori)

• Choice of good (optimal) parametres (masses, coupling constants, . . . ) not
straightforward



Potentials
(Topic of next talks)

• Empirical classical potentials

– pair potentials, three-body potentials

– polarisable force fields

– effective medium theory, embedded atom method

• Empirical quantum mechanical potentials

– tight binding Hamiltonian

– semi-empirical quantum chemistry methods

• Ab initio potentials

– quantum chemistry, methods based on wave function

– density functional theory



Molecular dynamics: Summary

• Molecular dynamics can be used to perform real-time dynamics in atomistic
systems

• Verlet algorithm yields stable dynamics (in CPMD implemented algorithm
velocity Verlet)

• Maximum time step ∆t ≈ 1 fs (highest ionic frequency 2000− 3000 cm−1)

• Temperature can be controlled via rescaling – (initial) equilibration – and
thermostats (e. g. Nosé-Hoover thermostat chains) for NVT ensemble

• Constraints can be used to pose restrictions on the atoms

• They can be used to direct reactions, however in complicated (potential/free)
energy landscapes they might not yield the correct reaction path (in
reasonable simulation time, at least)

• Metadynamics looks like a promising method for finding reaction paths and
(potential/free) energy surfaces


