
Density functional theory



Explicit electronic structure

• When does one have to solve the electron structure explicitly?

– Chemical reactions: Breaking and creation of chemical bonds

– Changing coordination

– Changing type of interaction

– Difficult chemistry of elements

• However, the complexity of the problem grows immensely: Nuclei localised
(only coordinates needed), explicit electron structure means solving the full
Schrödinger equation

⇒ Compromises, approximations



Many body electronic structure theory

• Born-Oppenheimer Ansatz leads to a many body Schrödinger equation

HeΨ{RI} ({ri}) = Ee
{RI}Ψ{RI} ({ri})

with Hamiltonian

He = T̂e + V̂ext + V̂ee

=
∑

i

−
h̄2

2me
∇2

i + Vext (r) +
1

4πε0

∑
ij

e2

|ri − rj|

• Wave function

Ψ{RI} (r1, . . . , rN)

depends on all the coordinates of the electrons; it has to satisfy

Ψ(r1, . . . , ri, . . . , rj, . . . rN) = −Ψ(r1, . . . , rj, . . . , ri, . . . rN)

and the ground state energy is obtained via minimisation

E0 = min
Ψ(r1,...,rN)

〈Ψ| Ĥ
∣∣ Ψ〉

subject to the constraint on normalisation



Many body wave function
Explicit presentation

• Imagine storing the full many body wave function, not even speaking of
solving it

• For example 10 orbitals (20 electrons with spin degeneracy), 100 points per
orbital

– 10010 points, 4 bytes per value ⇒ ≈ 300’000 PB

⇒ The data amount is impossible to handle, simplification and/or
approximations required



Quantum chemistry approaches

• Hartree-Fock: Approximate wave function with a single determinant;
anti-symmetric property automatically fulfilled

• Correlation:

– MP2, MP3, MP4

– MC-SCF

– FCI

– Coupled-cluster

– . . .



Alternative route: via density

• Density is a basic property of the system and the coordinate space does not
grow with the number of particles

• It is enough to know only the (electron) density?

n1 (r) = N

∫
. . .

∫
|Ψ(r, r2, . . . , rN)|2 dr2 dr3 . . . drN



Solution: Walter Kohn





Contributions of Walter Kohn

• The foundations could be found already in the literature
(Thomas-Fermi, . . . ), but the essentials were still missing

– Hohenberg-Kohn theorems (1964)

– Kohn-Sham scheme (1965)

• Also other contributions in the field of physics: Kohn anomaly, . . .



Hohenberg-Kohn theorem I

The electron many body (ground state) wave function

Ψ(r, r2, . . . , rN) of a system of N interacting electrons is

a unique functional of the electronic density n (r)

Thus the density can be used instead of the (external) potential to characterise
all the properties of an electronic structure

(That the density defines the potential is trivial)



Hohenberg-Kohn theorem I: Proof
By reduction ad absurdum:

• Suppose two different potentials, vext,1 and vext,2, yielding the same density,
but with different ground state wave functions Ψ1 and Ψ2

• Now try Ψ2 with the potential vext,1; by variational principle,

〈Ψ2| T̂ + V̂ee + vext,1 |Ψ2〉 > 〈Ψ1| T̂ + V̂ee + vext,1 |Ψ1〉
Since the density is the same,

〈Ψ2| T̂ + V̂ee |Ψ2〉 > 〈Ψ1| T̂ + V̂ee |Ψ1〉
Swap 1 and 2,

〈Ψ1| T̂ + V̂ee |Ψ1〉 > 〈Ψ2| T̂ + V̂ee |Ψ2〉

⇒ Absurdum!



Hohenberg-Kohn theorem II

From all the densities, the one n that minimizes the

energy functional with a given external potential is the

ground state density, i. e. the density which corresponds

to the solution of the Schrödinger equation; E [ñ] ≥ E0



Hohenberg-Kohn theorem II: Proof

• From the first theorem it follows that n (r) defines its own potential vext and
thus Ĥ and ultimately the wave function. Hence, any property is a functional
of n. Now, apply another wavefunction Ψ̃ to Ĥ, the variational principle
states,

• 〈
Ψ̃

∣∣ T̂ + V̂ee + vext

∣∣Ψ̃〉
≥ E [n]

One can also use define a universal functional F [n] = T̂ + V̂ee, i. e. it is
independent of vext (r). So if you find it. . . Many problems solved! (And you’ll get
a paid visit to Stockholm!)



Chemical potential

• All the variations with respect to density must be done at a constant number
of electrons N

• This can be done applying a Lagrangean multiplier µ

E′[n] = E[n]− µ

[∫
r

n (r) dr−N

]
• Variation yields

δE′[n] = δE[n]− µ

∫
r

δn (r) dr

= δ

{
E[n]− µ

∫
r

n (r) dr

}
=

∫
r

δE[n]

δn (r)
δn (r)− µ

∫
r

δn (r) dr

=

∫
r

{
δE[n]

δn (r)
− µ

}
δn (r) dr = 0

⇒

µ =
δE[n]

δn (r)
= vext (r) +

δT [n]

δn (r)
+

δVee[n]

δn (r)



Kohn-Sham Ansatz

• Assume that one electron orbitals {φi} which are multiplicative in their Slater
determinant wave function (i. e. non-interacting),

Ψs =
1

N !
|φ1 φ2 . . . φN |.

• Orbitals φi are eigenstates of an effective (Kohn-Sham) potential vs and
orthonormal,

Ĥsφi = εiφi Ĥs = −
1

2
∇2 + vs(r)

〈φi|φj〉 = δij n(r) =
N∑
i

|φi(r)|2



Kohn-Sham scheme: Total energy

• This Ansatz leads to the total energy

EKS[n] =

∫
r

n(r) vext(r) dr + Ts[n] + EH[n] + Exc[n]

or, according to Hohenberg & Kohn

E[n] =

∫
r

n(r) vext(r) dr + Funiversal[n].

• The first term corresponds to interaction between electrons and external
potential (ionic density + perturbations), and

Ts = −
1

2
min
{φi}7→n

N∑
i

〈φi|∇2|φi〉; kinetic energy of non− interactingelectrons

EH[n] =
1

2

∫
r

∫
r′

n(r)n(r′)

|r− r′|
dr′ dr; the classical Coulomb interaction, or Hartree term

Exc[n]; all the remainder, i. e.
Exc[n] = (T [n]− Ts[n]) + (Eee − EH[n])



Kohn-Sham potential

• Variational principle: for infinitesimally small variation δn(r)
(conserving N , i. e.

∫
r
δn(r) dr = 0),

δEv = δTs +

∫
r

(
vext(r) +

δEH

δn(r)
+

δExc

δn(r)

)
δn(r) dr = 0

• At the minimum

vH (r) =
δEH

δn(r′)
=

∫
r′

n(r′)

|r− r′|
dr′; Hartree potential

vxc ≡
δExc

δn(r)
; exchange-correlation potential

• We need still the variation δTs of the kinetic energy part



Kohn-Sham potential
Kinetic part δTs?

• HK theorem: associate to nNI a potential vs[n] and minimise energy functional
Es,

Es[n] =
∑

i

〈φi| −
1

2
∇2 + vs[n]|φi〉 = Ts[n] +

∫
r

vs(r, [n])n(r) dr

and, due to the variational principle,

δEs = δTs +

∫
r

vs(r) δn(r) dr = 0 .

• Hence

δTs = −
∫

r

vs(r) δn(r) dr



Kohn-Sham potential

• Substitute δTs,

δEv = −
∫

r

vs(r) δn(r) dr +

∫
r

(
vext(r) +

δEH

δn(r)
+

δExc

δn(r)

)
δn(r) dr = 0.

• The condition for n to be n0, i. e. the density which minimizes Ev, is that the
integrands equate,

vs[n0](r) = vext(r) +

∫
r′

n0 (r′)

|r− r′|
dr′ + vxc[n0](r)

A self-consistent evaluation for n0 is required

• Hohenberg-Kohn theorem: The densities have to be the same

n0(r) = nNI [vs(r, [n0])] (r) = nNI

[
vext(r) +

∫
r′

n0(r′)

|r− r′|
dr′ + vxc[n0](r)

]
(r) .



Ground state energy
Alternative expression

• E0 = Ev[n0] is given by

E0 =

∫
r

vext n0 dr + Ts[n0] + EH[n0] + Exc[n0]

• While also,

Es[n0] = Ts[n0] +

∫
r

vs[n0]n0 dr =
N∑
i

εi



Ground state energy
Alternative expression

E0 =

∫
r

vext n0 dr + Ts[n0] + EH[n0] + Exc[n0]

=

∫
r

vext n0 dr +
N∑
i

εi −
∫

r

vs[n0]n0 dr + EH[n0] + Exc[n0]

=

∫
r

(vext − vs) n0 dr +
N∑
i

εi + EH[n0] + Exc[n0]

=

∫
r

[
vext −

(
vext +

∫
r

n0(r′)

|r− r′|
dr′ + vxc

)]
n0 dr +

N∑
i

εi + EH[n0] + Exc[n0],

= −
∫

r

∫
r′

n0(r′)n0(r)

|r− r′|
dr′ dr−

∫
r

vxc n0 dr +
N∑
i

εi + EH[n0] + Exc[n0]

= −2EH[n0]−
∫

r

vxc n0 dr +
N∑
i

εi + EH[n0] + Exc[n0]

E0 = −
∫

r

vxc n0 dr +
N∑
i

εi − EH[n0] + Exc[n0]



Kohn-Sham scheme
Observations

• The Kohn-Sham equations must be solved self-consistently :

n (r) ⇒ vs [n] ⇒ {φi} ⇒ n (r) ⇒ . . .

• The Kohn-Sham potential is local

• The eigenvalues are not physical, except for the one of the highest occupied
orbital, which is (should be) the ionisation potential

• The eigenvectors φi are not any single-particle orbitals

• Please remember: DFT is a ground state theory

• The exact functional is not known (at the time being)



Exchange-correlation functional



Approximations to vxc
Local Density Approximation

• Approximate the exchange-correlation functional with its counter-part for
homogeneous electron gas

ELDA
xc =

∫
r

εxc(n(r))n (r) dr

εxc is the exchange and correlation energy per electron of the homogeneous
electron gas with density n

• Idea: Evaluate the exchange-correlation function(al) at each point of space r
using the local density at that point as if the density around was
homogeneous, irrespective of the true surroundings

• The function can be separated into the exchange and correlation parts, and
they are both well defined separately:

εxc(n) = εx(n) + εc(n).



Approximations to vxc
Performance of the Local Density Approximation

• The LDA exchange energy is due to Slater and Dirac,

εx(n) = Cxn
1/3 , where Cx = −

3

4
(
3

π
)1/3

• The exact analytical form of the correlation energy εc(n) of the homogeneous
electron gas is not known! The correlation energy is therefore fitted to
quantum Monte-Carlo results (Ceperley & Alder) and analytical high- and
low-density limits

– There are several parametrisations: Vosko, Wilk & Nusair (1980); Perdew
& Zunger (1981); Perdew & Wang (1992))

– Default LDA in CPMD reproduces the Perdew-Wang functional
[S Goedecker, M Teter & J Hutter, PRB 54, 1703 (1996)]



Approximations to vxc
Local Density Approximation

Correlation energy function εc(n)



Approximations to vxc
Performance of the Local Density Approximation

• The asymptotic decay of the exact functional is ∝ 1
r

outside n (Almbladh and
von Barth, 1985), whereas for LDA exponential (Tong and Sham, 1966;
Lang and Kohn, 1970; Lang and Kohn, 1971) due to the exponential decay
of the density

• Tail is crucial for IP’s, work functions of surfaces and stability of negative
atoms

• Overestimation of intramolecular forces → too large binding energies,
cohesion, van der Waals complexes

• Vibrational frequencies, phonons in solids, molecular geometries are ok; too
small lattice constants and bulk compressibility or modulus too large

• sd energy differences, spin-states bad ↔ magnetic properties

• Reaction barriers underestimated or even negative (H2 + H reaction)

Accuracy often similar as in Hartree-Fock but cheaper and more physical insight
(density).



Approximations to vxc
Local Density Approximation

Structural properties



Approximations to vxc
Local Density Approximation

Band gaps

Please remember: Ground state theory. . . !



Approximations to vxc
Performance of the Local Density Approximation

Why does it albeit work so well?

• The XC contribution is the smallest (that’s why it was packed aside in the
first place)

• LDA, despite is simplicity, still fulfills many important requirements set for
the exact functional; scaling relations, sum rules, . . .

• There is a major error cancellation between the exchange and correlation
(Warning: Same occurs with many other functionals also; thereby best
keeping the same “level of sophistication” in both parts)



Approximations to vxc
Proportions of energies

Energy components in Mn atom; EC ≈ Ex



Approximations to vxc
Performance of the Local Density Approximation

Why does it albeit work so well?

• The XC contribution is the smallest (that’s why it was packed aside in the
first place)

• LDA, despite is simplicity, still fulfills many important requirements set for
the exact functional; scaling relations, sum rules, . . .

• There is a major error cancellation between the exchange and correlation
(Warning: Same occurs with many other functionals also; thereby best
keeping the same “level of sophistication” in both parts)



Approximations to vxc
Exchange-correlation hole

The “hole” the exchange and correlation dig around the reference electron

The hole (top) is badly described, however the spherical average (bottom), which
is the property needed, agrees reasonably; notice, that in LDA the hole is centred
at the reference electron!



Approximations to vxc
Performance of the Local Density Approximation

Why does it not work so well?

• Missing integer discontinuity in the potential; thus bad excitation energies;
the first place)

• Self-interaction not excluded: The electron interacts directly with itself

• Thus for example d and f functions underbound (e. g. density of states in fcc
Cu)

• Wrong tail: no Rydberg states, image states at metal surfaces



Approximations to vxc
Generalised Gradient Approximation

Idea: Extend LDA to inhomogeneous systems by inclusion of density gradients.

• Straight-forward approach: Taylor expansion around the density.
→ Gradient Expansion Approximation (GEA) by Hohenberg and Kohn (1964)

• However, performance usually worse than LDA

• Improve through increased freedom in functional form and approximation:
Generalised Gradient Approximation, GGA

→ many different functionals, e. g. BLYP, P86, PW91, PBE



Approximations to vxc
GGA - PBE

Perdew, Burke & Ernzerhof, Physical Review Letters (1996):

• Like Perdew-Wang’91: “Analytical” function, only “natural constants”

• Det vill säga, no fitting

EPBE
xc = EPBE

x + EPBE
c

EPBE
x (n, |∇n|) =

∫
r

n εLDA
x (n)FPBE

x (s) dr,

FPBE
x (s) = 1 + κ−

κ

1 + µs2

κ

,

µ = β

(
π2

3

)



EPBE
c (n, |∇n|) =

∫
r

drn
[
εLDA
xc (n) + HPBE

c (rs, η, t)
]
,

HPBE
c (rs, η, t) = γφ3 ln

[
1 +

β

γ
t2

(
1 + At2

1 + At2 + A2t4

)]
,

A (rs, η) =
β

γ

1

e−εLDA
c /γφ3 − 1

,

φ (η) =
1

2

[
(1 + η)2/3 + (1− η)2/3

]
,

γ =
1− ln 2

π2
; rs =

[
3

4πn

]1/3

local Wigner-Seitz radius

Here s(r) = |∇n|
2kFn

and t(r) = |∇n|
2φksn

, ks =
√

4kF/π, are dimensionless density gradients

and β comes from the generalised gradient expansion for the correlation (Perdew
et al, 1992) and ≈ 0.066725 (Wang & Perdew, 1991). κ is formally set by the
Lieb-Oxford bound (1981) for the exchange energy

Ex [n] ≥ Exc [n] ≥ −1.679

∫
r

n4/3 dr .

Note: revPBE plays exactly with this parameter



Approximations to vxc
Performance of GGA’s

• core electrons are more strongly bound → nucleus better screened → valence
electrons are less bound → longer bond lengths, larger lattice constant (→
too low bulk moduli)

• vibrational frequencies similar to LDA

• reaction barriers larger than LDA

• intramolecular interactions weaker → too low work functions and energies of
surfaces, accurate to underestimated interaction energies for van der Waals
complexes



Further approximations to vxc
Climbing the ladder

• John Perdew’s vision on the development of XC functionals

NIRVANA (chemical accuracy)
explicit dependence on. . .

unoccupied orbitals rung 5 fully nonlocal
occupied orbitals rung 4 e. g. hybrid functionals

kinetic energy density rung 3 meta-GGAs
gradients of the density rung 2 GGAs

local density only rung 1 LDA
EARTH (Hartree theory)



Solving the Kohn-Sham equations



Resolution of the Kohn-Sham equations
Diagonalisation

1 Take nold as input for self-consistency equation,

vs(r)
old = vext(r) +

∫
r

dr′
n(r′)old

|r− r′|
+ vxc(r, [n

old])

2 Solve (by diagonalisation) Schrödinger equation for NI electrons → {φnew}(
−

1

2
∇2 + vold

s

)
φnew

i = εnew
i φnew

i

3 nold =
∑
|φnew

i |2 and goto 1 unless converged



Resolution of the Kohn-Sham equations
Constraint minimisation technique

Minimise

E[n] =

∫
r

n vext dr + Ts + EH + Exc

with respect to {φi}, E0 = min
{φi}

E[n], and under the constraint that 〈φi|φj〉 = δij

Use Lagrange multipliers Λij and minimise

E′ = E[{φi}]−
∑
ij

Λij(〈φi|φj〉 − δij)

At the minimum,
δE

δφ∗i
=

∑
j

Λijφj



Resolution of the Kohn-Sham equations
Constraint minimisation technique

δE

δφ∗i
= −

1

2
∇2φi(r) +

∫
r

dr′
(

vext(r
′) +

δEH

δn
+

δExc

δn

)
δn(r′)

δφ∗i (r)
,

δn(r′)

δφ∗i (r)
= δ(r− r′)φi(r),

→
δE

δφ∗i
=

[
−

1

2
∇2 + vs

]
φi,

= Ĥsφi

Minimise E iteratively with gradient – but Ĥs is not explicitly needed, at the
minimum any set {φi} satisfying

δE′ = 0 =⇒ Ĥsφi = Λijφj,

is sufficient and hence called ”minimal orbitals”.



Resolution of the Kohn-Sham equations
Minimal vs canonical KS-orbitals

• Canonical {φc
i} are those minimal orbitals which diagonalise Lagrange

multiplier matrix, Λc
ij = εiδij:

Ĥsφi = εiδij.

They can be obtained by unitary transformation of any minimal (occupied)
orbital set.

• For any minimal orbital set and any unitary transformation, φ′i =
∑

j Uijφj, n

(and consequently E0) is kept invariant (UU † = 1).

• All minimal {φ′i} must satisfy that Ĥsφ′i = Λ′
ijφ

′
j, with Λ′ = UΛU †.

• {φc
i} are good for interpration but not needed for E0 and FI.



Ionic forces
Hellmann-Feynman forces in DFT

FI = −
∂E0(R)

∂RI
= −

∑
i

∫
r

dr
δFuniversal

δφ∗i

∂φ∗i
∂RI

−
∫

r

drn
∂v

∂RI
,

= ZI

∫
r

dr
n(r) (r−RI)

|r−RI|3

The first term vanishes because of stationary conditions.



Density functional theory: Summary

• All (ground state) properties can be derived from the ground state density

• The Kohn-Sham scheme yields a set of self-consistent equations; however the
effective, or Kohn-Sham potential is local and thus the scaling with system
size not that bad

• Local density approximation yields in general good structural properties, less
so for energetics

• Generalised gradient approximations usually yield more accurate results than
the local density approximation at a similar cost

• There is no systematic way to improve the results (so far, that is)

• Yet the method of choice for systems with ' 102..104 atoms



Reminder: Kohn-Sham Equations

{
−

1

2
∇2 + vs [n] (r)

}
φi (r) = εiφi (r)

n (r) =
∑
i

|φi (r)|2

vs [n] (r) = vext (r) +
∫
r′

n
(
r′

)
|r− r′|

dr′ + vxc [n] (r)


