Density functional
perturbation theory




Extending the Hamiltonian

e A virtual experiment ... Definition of experiment: perturb given system and
observe response — increased understanding.

1 Include perturbation in Hamiltonian, i.e. additional external potential.
2 Get electronic structure via variational principle.

3 Consider how expectation values change.
— perturbational Hamiltonian defines the problem as an external field.

e appealing concept to scientists: experiment, expansion, well defined
perturbation.



Perturbation Theory - fundamental

e Taylor-expansion of H, W;, and E;,
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e Assume that expansion converges and perturbation be small

e Schrodinger equation,
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Perturbation Theory - fundamental

e Order according to A,
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— coefficients of A of any order must vanish,
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Perturbation Theory - E(1)

e Consider the unperturbed wavefunction to be already optimized,
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e First order energy perturbation is simply ground state expectation value of
perturbational Hamiltonian, i.e. in DFT,

EMD = /n(r) AWM dr ~ 8, E©



Perturbation Theory - \IJ§-1)

e EXxpand perturbed wavefunction in a basis of unperturbed wavefunctions
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Apply to DFT - DFPT

Expansion of the perturbation
1
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Integrated perturbation must be zero:



Apply to DFT - DFPT

unperturbed ¢ are known, go variational
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Second order — already only XC contribution left. Self-consistent response:

1 62 Eye
SV +w) = Uy +w) dr’
scr (r, £w) / {|r Yy + S (r)on () n{o}} n(r', fw) dr

(2)



SCF calculation

Iterative calculation
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There is the formal solution
s = Gy AV (4)
More details in [J. Phys. Chem. A 105, 1951 (2001), J. Chem. Phys. 113, 7102
(2000).]



Applications of DFPT

Phonons, Raman (polarisability), NMR, ...






Kohn-Sham DFT - a refreshment

Electronic density, total energy functional, ab initio
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Introducing the KS-orbitals

Ansatz:

e Assume one electron orbitals {¢;} which are multiplicative in their Slater
determinant wave function (i. e. non-interacting),
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e And that orbitals ¢; are eigenstates of an effective yet undefined
(Kohn-Sham) potential vs and orthonormal,
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Kohn-Sham scheme: Total energy

e T his Ansatz leads to the total energy
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or,
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e T he first term corresponds to interaction between electrons and external
potential (ionic density 4+ perturbations), and
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Kohn-Sham potential

How to know the potential for KS-orbitals?

e Use variational principle: for infinitesimally small variation én(r)
(conserving N, i.e. [ dn(r)dr = 0),
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e But what about the variation of the kinetic energy part, 6757



Kohn-Sham potential

Kinetic part §7%7

e Use HK theorems: associate to nn; unique potential vs[n] (HK1) and minimise
its energy functional E, (HK?2),
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and variationally,
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e Hence
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Kohn-Sham potential
Replace 675,
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The condition for n to be ng, i. e. the density which minimizes E,, is that the
integrands equate,
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A self-consistent evaluation for ng is required
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Hohenberg-Kohn theorem: The densities have to become the same
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Ground state energy

Alternative expression
e Fy = E,[ng] is given by
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e \While also,
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Ground state energy

Alternative expression
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Resolution of the Kohn-Sham equations

Diagonalisation

1 Take n°¢ as input for self-consistency equation,
/)old

2 Solve (by diagonalisation) Schrodinger equation for NI electrons — {¢""}
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3 nold = " |¢"¥|? and goto 1 unless converged



Kohn-Sham scheme

Observations

The Kohn-Sham equations must be solved self-consistently:

n(r) = vs[n] = {¢i} = n() = ...
The Kohn-Sham potential is local

The eigenvalues are not physical, except for the one of the highest occupied
orbital, which is (should be) the ionisation potential

The eigenvectors ¢; are not any single-particle orbitals
Please remember: DFT is a ground state theory

The exact functional is not known (at the time being)



