Density functional perturbation theory

Extending the Hamiltonian

- A virtual experiment ... Definition of experiment: perturb given system and observe response → increased understanding.
 - 1 Include perturbation in Hamiltonian, i.e. additional external potential.
 - 2 Get electronic structure via variational principle.
 - 3 Consider how expectation values change.
- → perturbational Hamiltonian defines the problem as an external field.
- appealing concept to scientists: experiment, expansion, well defined perturbation.

Perturbation Theory - fundamental

• Taylor-expansion of \widehat{H} , Ψ_j , and E_j ,

$$\hat{H} = \hat{H}^{(0)} + \lambda \hat{H}^{(1)} + \dots$$

$$\Psi_{j} = \Psi_{j}^{(0)} + \lambda \Psi_{j}^{(1)} + \dots$$

$$E_{j} = E_{j}^{(0)} + \lambda E_{j}^{(1)} + \dots$$

- Assume that expansion converges and perturbation be small
- Schrödinger equation,

$$\left[\hat{H}^{(0)} + \lambda \hat{H}^{(1)} + \ldots\right] \left[\Psi_j^{(0)} + \lambda \Psi_j^{(1)} + \ldots\right] = \left[\Psi_j^{(0)} + \lambda \Psi_j^{(1)} + \ldots\right] \left[E_j^{(0)} + \lambda E_j^{(1)} + \ldots\right]$$

Perturbation Theory - fundamental

• Order according to λ ,

$$0 = \left(\hat{H}^{(0)} - E_j^{(0)}\right) \Psi_j^{(0)}$$

$$+ \lambda \left[\left(\hat{H}^{(1)} - E_j^{(1)}\right) \Psi_j^{(0)} + \left(\left(\hat{H}^{(0)} - E_j^{(0)}\right) \Psi_j^{(1)} \right]$$

$$+ \dots$$

 \rightarrow coefficients of λ of any order must vanish,

$$0 = (\hat{H}^{(0)} - E_j^{(0)}) \Psi_j^{(0)}$$

$$0 = [(\hat{H}^{(1)} - E_j^{(1)}) \Psi_j^{(0)} + ((\hat{H}^{(0)} - E_j^{(0)}) \Psi_j^{(1)}]$$

$$0 = \dots$$

Perturbation Theory - $E^{(1)}$

Consider the unperturbed wavefunction to be already optimized,

$$0 = (\hat{H}^{(1)} - E_j^{(1)}) \Psi_j^{(0)} + ((\hat{H}^{(0)} - E_j^{(0)}) \Psi_j^{(1)}$$

$$0 = \langle \Psi_j^{(0)} | (\hat{H}^{(1)} - E_j^{(1)}) | \Psi_j^{(0)} \rangle + \langle \Psi_j^{(0)} | ((\hat{H}^{(0)} - E_j^{(0)}) | \Psi_j^{(1)} \rangle$$

$$0 = \langle \Psi_j^{(0)} | (\hat{H}^{(1)} - E_j^{(1)}) | \Psi_j^{(0)} \rangle$$

$$E_j^{(1)} = \langle \Psi_j^{(0)} | \hat{H}^{(1)} | \Psi_j^{(0)} \rangle$$

 First order energy perturbation is simply ground state expectation value of perturbational Hamiltonian, i.e. in DFT,

$$E^{(1)} = \int_{\mathbf{r}} n(\mathbf{r}) \, \hat{H}^{(1)} \, d\mathbf{r} \approx \partial_{v_{\text{ext}}} E^{(0)}$$

Perturbation Theory - $\Psi_j^{(1)}$

• Expand perturbed wavefunction in a basis of unperturbed wavefunctions

$$\Psi_j^{(1)} = \sum_{i \neq j} c_{ij} \Psi_i^{(0)}$$

Hence

$$0 = \left(\widehat{H}^{(1)} - E_{j}^{(1)}\right) \Psi_{j}^{(0)} + \left(\widehat{H}^{(0)} - E_{j}^{(0)}\right) \Psi_{j}^{(1)}$$

$$0 = \left\langle \Psi_{k}^{(0)} \right| \left(\widehat{H}^{(1)} - E_{j}^{(1)}\right) \left| \Psi_{j}^{(0)} \right\rangle + \sum_{i \neq j} c_{ij} \left\langle \Psi_{k}^{(0)} \right| \left(\left(\widehat{H}^{(0)} - E_{j}^{(0)}\right) \left| \Psi_{i}^{(0)} \right\rangle$$

$$0 = \left\langle \Psi_{k}^{(0)} \right| \widehat{H}^{(1)} \left| \Psi_{j}^{(0)} \right\rangle - c_{kj} \left(E_{k}^{(0)} - E_{j}^{(0)}\right)$$

$$c_{kj} = \frac{\left\langle \Psi_{k}^{(0)} \right| \widehat{H}^{(1)} \left| \Psi_{j}^{(0)} \right\rangle}{E_{k}^{(0)} - E_{j}^{(0)}}$$

Apply to DFT - DFPT

Expansion of the perturbation

$$E[n] = E^{(0)}[n^{(0)}] + \lambda E^{(1)}[n^{(0)}] + \frac{1}{2}\lambda^2 E^{(2)}[n^{(1)}]...$$

$$\phi = \phi^{(0)} + \lambda \phi^{(1)} + ...$$

$$n(\mathbf{r}) = \sum_{i} |\phi_i^{(0)} + \phi_i^{(1)} + ...|^2$$

$$n(\mathbf{r}) = \sum_{i} (|\phi_i^{(0)}|^2 + (\phi_i^{*(0)}\phi_i^{(1)} + \phi_i^{*(1)}\phi_i^{(0)}) + ...)$$

Integrated perturbation must be zero:

$$\int d\mathbf{r} \, n^{(1)} = 0$$

$$\rightarrow \langle \phi_i^{(0)} | \phi_i^{(1)} \rangle + \langle \phi_i^{(1)} | \phi_i^{(0)} \rangle = 0 \, \forall i$$

$$\rightarrow \langle \phi_i^{(0)} | \phi_j^{(1)} \rangle = 0 \, \forall i, j$$

$$(1)$$

Apply to DFT - DFPT

unperturbed ϕ are known, go variational

$$\min_{\{\phi\}} E[\{\phi\}] \leftrightarrow \min_{\{\phi_i^{(1)}\}} E^{(2)}[\{\phi^{(0)}, \phi^{(1)}\}]$$

$$E^{(2)} = \phi^{*(1)} \frac{\delta^2 E^{(0)}}{\delta \phi^* \delta \phi} \phi^{(1)} + \frac{\delta E^{(1)}}{\delta \phi} \phi^{(1)}$$
 orthogonality: $\langle \phi_j^{(0)} | \phi_k^{(1)} \rangle = 0 \ \forall \ j, k$ (2)

Second order — already only XC contribution left. Self-consistent response:

$$\delta V_{\text{SCF}}(\mathbf{r}, \pm \omega) = \int \left\{ \frac{1}{|\mathbf{r} - \mathbf{r}'|} + \frac{\delta^2 E_{\text{XC}}}{\delta n(\mathbf{r}) \delta n(\mathbf{r}')} \bigg|_{n^{\{0\}}} \right\} n^{\{1\}}(\mathbf{r}', \pm \omega) \ d\mathbf{r}'$$

SCF calculation

Iterative calculation

$$\left(\hat{H}^{(0)}\delta_{ij} - \epsilon_{ij}^{(0)}\right)\phi_j^{(1)} + \hat{H}^{(3)}[n^{(1)}] = -\hat{H}^{(1)}\phi_i^{(0)} \tag{3}$$

There is the formal solution

$$\phi_i^{(1)} = \hat{G}_{ij}\hat{H}^{(1)}\phi_j^{(0)} \tag{4}$$

More details in [*J. Phys. Chem. A* **105**, 1951 (2001), *J. Chem. Phys.* **113**, 7102 (2000).]

Applications of DFPT

Phonons, Raman (polarisability), NMR, ...

Kohn-Sham DFT - a refreshment

Electronic density, total energy functional, ab initio

$$E_{KS} = -\frac{1}{2} \sum_{i} \langle \phi_{i} | \nabla^{2} | \phi_{i} \rangle$$

$$+ \frac{1}{2} \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r}) n(\mathbf{r}')}{\mathbf{r} - \mathbf{r}'}$$

$$- \sum_{I} Z_{I} \int d\mathbf{r} \frac{n(\mathbf{r})}{\mathbf{r} - \mathbf{R}_{I}}$$

$$+ E_{xc}$$

$$n(\mathbf{r}) = \sum_{i} |\phi_{i}(\mathbf{r})|^{2}$$

Introducing the KS-orbitals

Ansatz:

• Assume one electron orbitals $\{\phi_i\}$ which are multiplicative in their Slater determinant wave function (i. e. non-interacting),

$$\Psi_s = \frac{1}{N!} | \phi_1 \phi_2 \dots \phi_N |.$$

ullet And that orbitals ϕ_i are eigenstates of an effective yet undefined (Kohn-Sham) potential v_s and orthonormal,

$$\hat{H}_s \phi_i = \epsilon_i \phi_i$$
 $\hat{H}_s = -\frac{1}{2} \nabla^2 + v_s(\mathbf{r})$
 $\langle \phi_i | \phi_j \rangle = \delta_{ij}$ $n(\mathbf{r}) = \sum_i^N |\phi_i(\mathbf{r})|^2$

Kohn-Sham scheme: Total energy

• This Ansatz leads to the total energy

$$E_{KS}[n] = \int_{\mathbf{r}} n(\mathbf{r}) v_{\text{ext}}(\mathbf{r}) d\mathbf{r} + T_s[n] + E_H[n] + E_{xc}[n]$$

or,

$$E[n] = \int_{\mathbf{r}} n(\mathbf{r}) v_{\text{ext}}(\mathbf{r}) d\mathbf{r} + F_{\text{universal}}[n].$$

 The first term corresponds to interaction between electrons and external potential (ionic density + perturbations), and

$$T_s = -\frac{1}{2} \min_{\{\phi_i\} \mapsto n} \sum_i^N \langle \phi_i | \nabla^2 | \phi_i \rangle; \text{ kinetic energy of non--interacting electrons}$$

$$E_H[n] = \frac{1}{2} \int_{\mathbf{r}} \int_{\mathbf{r}'} \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' d\mathbf{r}; \text{ the classical Coulomb interaction, or Hartree term } E_{xc}[n]; \text{ all the remainder, } i. e.$$

$$E_{xc}[n] = (T[n] - T_s[n]) + (E_{ee} - E_H[n])$$

Kohn-Sham potential

How to know the potential for KS-orbitals?

• Use variational principle: for infinitesimally small variation $\delta n(\mathbf{r})$ (conserving N, i. e. $\int_{\mathbf{r}} \delta n(\mathbf{r}) d\mathbf{r} = 0$),

$$\delta E_v = \delta T_s + \int_{\mathbf{r}} \left(v_{\text{ext}}(\mathbf{r}) + \frac{\delta E_H}{\delta n(\mathbf{r})} + \frac{\delta E_{xc}}{\delta n(\mathbf{r})} \right) \delta n(\mathbf{r}) d\mathbf{r} = 0$$

• At the minimum

$$v_H(\mathbf{r}) = \frac{\delta E_H}{\delta n(\mathbf{r}')} = \int_{\mathbf{r}'} \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}';$$
 Hartree potential $v_{xc} \equiv \frac{\delta E_{xc}}{\delta n(\mathbf{r})};$ exchange-correlation potential

• But what about the variation of the kinetic energy part, δT_s ?

Kohn-Sham potential

Kinetic part δT_s ?

• Use HK theorems: associate to $n_{\rm NI}$ unique potential $v_s[n]$ (HK1) and minimise its energy functional E_s (HK2),

$$E_s[n] = \sum_i \langle \phi_i | -\frac{1}{2} \nabla^2 + v_s[n] | \phi_i \rangle = T_s[n] + \int_{\mathbf{r}} v_s(\mathbf{r}, [n]) \, n(\mathbf{r}) \, d\mathbf{r}$$

and variationally,

$$\delta E_s = \delta T_s + \int_{\mathbf{r}} v_s(\mathbf{r}) \, \delta n(\mathbf{r}) \, d\mathbf{r} = 0$$
.

Hence

$$\delta T_s = -\int_{\mathbf{r}} v_s(\mathbf{r}) \, \delta n(\mathbf{r}) \, d\mathbf{r}$$

Kohn-Sham potential

• Replace δT_s ,

$$\delta E_v = -\int_{\mathbf{r}} v_s(\mathbf{r}) \, \delta n(\mathbf{r}) \, d\mathbf{r} + \int_{\mathbf{r}} \left(v_{\text{ext}}(\mathbf{r}) + \frac{\delta E_H}{\delta n(\mathbf{r})} + \frac{\delta E_{xc}}{\delta n(\mathbf{r})} \right) \delta n(\mathbf{r}) \, d\mathbf{r} = 0.$$

• The condition for n to be n_0 , *i. e.* the density which minimizes E_v , is that the integrands equate,

$$v_s[n_0](\mathbf{r}) = v_{\text{ext}}(\mathbf{r}) + \int_{\mathbf{r}'} \frac{n_0(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + v_{xc}[n_0](\mathbf{r})$$

A self-consistent evaluation for n_0 is required

Hohenberg-Kohn theorem: The densities have to become the same

$$n_0(\mathbf{r}) = n_{\text{NI}} \left[v_s(\mathbf{r}, [n_0]) \right] (\mathbf{r}) = n_{\text{NI}} \left[v_{\text{ext}}(\mathbf{r}) + \int_{\mathbf{r}'} \frac{n_0(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + v_{xc}[n_0](\mathbf{r}) \right] (\mathbf{r})$$
.

Ground state energy

Alternative expression

• $E_0 = E_v[n_0]$ is given by

$$E_0 = \int_{\mathbf{r}} v_{\text{ext}} n_0 d\mathbf{r} + T_s[n_0] + E_H[n_0] + E_{xc}[n_0]$$

• While also,

$$E_s[n_0] = T_s[n_0] + \int_{\mathbf{r}} v_s[n_0] \, n_0 \, d\mathbf{r} = \sum_{i}^{N} \epsilon_i$$

Ground state energy

Alternative expression

$$E_{0} = \int_{\mathbf{r}} v_{\text{ext}} n_{0} d\mathbf{r} + T_{s}[n_{0}] + E_{H}[n_{0}] + E_{xc}[n_{0}]$$

$$= \int_{\mathbf{r}} v_{\text{ext}} n_{0} d\mathbf{r} + \sum_{i}^{N} \epsilon_{i} - \int_{\mathbf{r}} v_{s}[n_{0}] n_{0} d\mathbf{r} + E_{H}[n_{0}] + E_{xc}[n_{0}]$$

$$= \int_{\mathbf{r}} (v_{\text{ext}} - v_{s}) n_{0} d\mathbf{r} + \sum_{i}^{N} \epsilon_{i} + E_{H}[n_{0}] + E_{xc}[n_{0}]$$

$$= \int_{\mathbf{r}} \left[v_{\text{ext}} - \left(v_{\text{ext}} + \int_{\mathbf{r}} \frac{n_{0}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + v_{xc} \right) \right] n_{0} d\mathbf{r} + \sum_{i}^{N} \epsilon_{i} + E_{H}[n_{0}] + E_{xc}[n_{0}],$$

$$= -\int_{\mathbf{r}} \int_{\mathbf{r}'} \frac{n_{0}(\mathbf{r}') n_{0}(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' d\mathbf{r} - \int_{\mathbf{r}} v_{xc} n_{0} d\mathbf{r} + \sum_{i}^{N} \epsilon_{i} + E_{H}[n_{0}] + E_{xc}[n_{0}]$$

$$= -2E_{H}[n_{0}] - \int_{\mathbf{r}} v_{xc} n_{0} d\mathbf{r} + \sum_{i}^{N} \epsilon_{i} + E_{H}[n_{0}] + E_{xc}[n_{0}]$$

$$E_0 = -\int_{\mathbf{r}} v_{xc} \, n_0 \, d\mathbf{r} + \sum_{i}^{N} \epsilon_i - E_H[n_0] + E_{xc}[n_0]$$

Resolution of the Kohn-Sham equations

Diagonalisation

1 Take n^{old} as input for self-consistency equation,

$$v_s(\mathbf{r})^{old} = v_{\text{ext}}(\mathbf{r}) + \int_{\mathbf{r}} d\mathbf{r}' \frac{n(\mathbf{r}')^{old}}{|\mathbf{r} - \mathbf{r}'|} + v_{xc}(\mathbf{r}, [n^{old}])$$

2 Solve (by diagonalisation) Schrödinger equation for NI electrons $\rightarrow \{\phi^{new}\}$

$$\left(-\frac{1}{2}\nabla^2 + v_s^{old}\right)\phi_i^{new} = \epsilon_i^{new}\phi_i^{new}$$

3 $n^{old} = \sum |\phi_i^{new}|^2$ and goto 1 unless converged

Kohn-Sham scheme

Observations

• The Kohn-Sham equations must be solved self-consistently:

$$n(\mathbf{r}) \Rightarrow v_s[n] \Rightarrow \{\phi_i\} \Rightarrow n(\mathbf{r}) \Rightarrow \dots$$

- The Kohn-Sham potential is local
- The eigenvalues are *not* physical, except for the one of the highest occupied orbital, which is (should be) the ionisation potential
- The eigenvectors ϕ_i are not any single-particle orbitals
- Please remember: DFT is a ground state theory
- The exact functional is not known (at the time being)