DFT Plane Wave Code <u>— Do It Yourself</u>

Self-consistent loop in CPMD

- Calculate electron density $n(\mathbf{r}) = \sum_{i} f_{i} |\phi(\mathbf{r})|^{2}$
- Calculate local potential $V_{\text{local}}(\mathbf{r})$
- Calculate projectors $F_{I,i}^{\alpha}$
- Calculate forces on the orbital coefficients $=\frac{1}{f_i}\frac{\partial E_{\text{total}}}{\partial c_i^*(\mathbf{G})}$
- Propagate wave function coefficients
- Orthonormalise them

Components of Kohn-Sham energy

$$E_{\text{total}} = E_{\text{kin}} + E_{\text{local}}^{\text{PP}} + E_{\text{nonlocal}}^{\text{PP}} + E_{\text{xc}} + E_{\text{ES}}$$

$$E_{\text{kin}} = \sum_{i} f_{i} \sum_{\text{G}} \frac{1}{2} \text{G}^{2} |c_{i}(\text{G})|^{2}$$

$$E_{\text{local}}^{\text{PP}} = \sum_{I} \sum_{\text{G}} \Delta V_{\text{local}}^{I}(\text{G}) S_{I}(\text{G}) n^{*}(\text{G})$$

$$E_{\text{nonlocal}}^{\text{PP}} = \sum_{i} f_{i} \sum_{I} \sum_{\alpha,\beta \in I} (F_{I,i}^{\alpha})^{*} h_{\alpha\beta}^{I} F_{I,i}^{\beta}$$

$$E_{\text{xc}} = \Omega \sum_{\text{G}} \epsilon_{\text{xc}}(\text{G}) n^{*}(\text{G})$$

$$E_{\text{ES}} = 2\pi \Omega \sum_{\text{G} \neq 0} \frac{|n_{\text{tot}}(\text{G})|^{2}}{\text{G}^{2}} + E_{\text{ovrl}} - E_{\text{ovrl}}$$

$$F_{I,i}^{\alpha} = \frac{1}{\sqrt{\Omega}} \sum_{\mathbf{G}} P_{\alpha}^{I}(\mathbf{G}) S_{I}(\mathbf{G}) c_{i}^{*}(\mathbf{G})$$
$$P_{\alpha}^{I}(\mathbf{G}) = \frac{4\pi}{\sqrt{\Omega}} (-\mathbf{i})^{l} \int_{r} r^{2} P_{k}(r) j_{l}(Gr) Y_{lm}(\theta, \phi)$$

Force on wave function coefficient

$$E_{\text{total}} = E_{\text{kin}} + E_{\text{local}}^{\text{PP}} + E_{\text{nonlocal}}^{\text{PP}} + E_{\text{xc}} + E_{\text{ES}}$$

$$\frac{1}{f_{i}}\frac{\partial E_{\text{total}}}{\partial c_{i}^{*}(\mathbf{G})} = \frac{1}{2}\mathbf{G}^{2}c_{i}(\mathbf{G}) + \sum_{\mathbf{R}}V_{\text{loc}}(\mathbf{R})c_{i}(\mathbf{R}) + \sum_{I}\sum_{\alpha,\beta\in I}\left(F_{I,i}^{\alpha}\right)^{*}h_{\alpha\beta}^{I}P_{\beta}^{I}(\mathbf{G})S_{I}(\mathbf{G})$$

where the local potential $V_{\text{loc}}\left(\mathbf{R}
ight)$ is the Fourier transform of

$$V_{\text{loc}}(\mathbf{G}) = 4\pi \frac{n_{\text{tot}}(\mathbf{G})}{\mathbf{G}^2} + V_{\text{xc}}(\mathbf{G}) + \sum_{I} \Delta V_{\text{local}}(\mathbf{G}) S_{I}(\mathbf{G})$$

Calculation of density

- The calculation of the density is done in routine rhoofr
- The wave function coefficients $c_{ik}(G)$ come in in the array psi[;;]; the dimensions are 1.: G, 2.: state *i*, 3.: k point (please note: spin polarisation is currently not implemented in *Faust*!)
- 3D-FFT performed in bwfft()
- Also kinetic energy calculated
- Density collected into 3D real-space array rhoes[;;]

Local part of potential on force on orbital

Local part of potential from orbitals

Local part of potential and total energy

Forces on wave function coefficients

Forces on nuclei

Local part of potential and total energy

